Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
650
result(s) for
"Superior temporal sulcus"
Sort by:
The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults
2014
The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted.
Journal Article
The roles of the LpSTS and DLPFC in self‐prioritization: A transcranial magnetic stimulation study
2022
The Self‐Attention Network (SAN) has been proposed to describe the underlying neural mechanism of the self‐prioritization effect, yet the roles of the key nodes in the SAN—the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex (DLPFC)—still need to be clarified. One hundred and nine participants were randomly assigned into the LpSTS group, the DLPFC group, or the sham group. We used the transcranial magnetic stimulation (TMS) technique to selectively disrupt the functions of the corresponding targeted region, and observed its impacts on self‐prioritization effect based on the difference between the performance of the self‐matching task before and after the targeted stimulation. We analyzed both model‐free performance measures and HDDM‐based performance measures for the self‐matching task. The results showed that the inhibition of LpSTS could lead to reduced performance in processing self‐related stimuli, which establishes a causal role for the LpSTS in self‐related processing and provide direct evidence to support the SAN framework. However, the results of the DLPFC group from HDDM analysis were distinct from the results based on response efficiency. Our investigation further the understanding of the differentiated roles of key nodes in the SAN in supporting the self‐salience in information processing.
We used the transcranial magnetic stimulation (TMS) technique to test the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex's (DLPFC) causal roles in the self‐prioritization effect and elaborated their influences through hierarchical drift‐diffusion modeling (HDDM). This work provides novel evidence supporting the Self‐Attention Network (SAN) account of the self‐prioritization effect and deepens our understating regarding the brain mechanism of prioritizing self‐related stimuli.
Journal Article
Dissociating the functions of three left posterior superior temporal regions that contribute to speech perception and production
2021
Prior studies have shown that the left posterior superior temporal sulcus (pSTS) and left temporo-parietal junction (TPJ) both contribute to phonological short-term memory, speech perception and speech production. Here, by conducting a within-subjects multi-factorial fMRI study, we dissociate the response profiles of these regions and a third region – the anterior ascending terminal branch of the left superior temporal sulcus (atSTS), which lies dorsal to pSTS and ventral to TPJ. First, we show that each region was more activated by (i) 1-back matching on visually presented verbal stimuli (words or pseudowords) compared to 1-back matching on visually presented non-verbal stimuli (pictures of objects or non-objects), and (ii) overt speech production than 1-back matching, across 8 types of stimuli (visually presented words, pseudowords, objects and non-objects and aurally presented words, pseudowords, object sounds and meaningless hums). The response properties of the three regions dissociated within the auditory modality. In left TPJ, activation was higher for auditory stimuli that were non-verbal (sounds of objects or meaningless hums) compared to verbal (words and pseudowords), irrespective of task (speech production or 1-back matching). In left pSTS, activation was higher for non-semantic stimuli (pseudowords and hums) than semantic stimuli (words and object sounds) on the dorsal pSTS surface (dpSTS), irrespective of task. In left atSTS, activation was not sensitive to either semantic or verbal content. The contrasting response properties of left TPJ, dpSTS and atSTS was cross-validated in an independent sample of 59 participants, using region-by-condition interactions. We also show that each region participates in non-overlapping networks of frontal, parietal and cerebellar regions. Our results challenge previous claims about functional specialisation in the left posterior superior temporal lobe and motivate future studies to determine the timing and directionality of information flow in the brain networks involved in speech perception and production.
Journal Article
A face is more than just the eyes, nose, and mouth: fMRI evidence that face-selective cortex represents external features
by
Morris, Ethan J.
,
Kamps, Frederik S.
,
Dilks, Daniel D.
in
Adult
,
Brain Mapping
,
Cerebral Cortex - physiology
2019
What is a face? Intuition, along with abundant behavioral and neural evidence, indicates that internal features (e.g., eyes, nose, mouth) are critical for face recognition, yet some behavioral and neural findings suggest that external features (e.g., hair, head outline, neck and shoulders) may likewise be processed as a face. Here we directly test this hypothesis by investigating how external (and internal) features are represented in the brain. Using fMRI, we found highly selective responses to external features (relative to objects and scenes) within the face processing system in particular, rivaling that observed for internal features. We then further asked how external and internal features are represented in regions of the cortical face processing system, and found a similar division of labor for both kinds of features, with the occipital face area and posterior superior temporal sulcus representing the parts of both internal and external features, and the fusiform face area representing the coherent arrangement of both internal and external features. Taken together, these results provide strong neural evidence that a “face” is composed of both internal and external features.
•Face regions represent external features (hair, head outline, neck and shoulders).•Selectivity for external features rivals that for internal features.•OFA and pSTS represent the parts of both internal and external features.•FFA represents the coherent arrangement of both internal and external features.•A “face” is composed of both internal and external features.
Journal Article
Adolescents’ neural response to social reward and real-world emotional closeness and positive affect
by
Allen, Nicholas B.
,
Flores, Luis E.
,
Healey, Kati L.
in
Adolescent
,
Adolescent Behavior - physiology
,
Adolescent Behavior - psychology
2018
Feeling emotionally close to others during social interactions is a ubiquitous and meaningful experience that can elicit positive affect. The present study integrates functional magnetic resonance imaging (fMRI) and ecological momentary assessment (EMA) to investigate whether neural response to social reward (1) is related to the experience of emotional closeness and (2) moderates the association between emotional closeness and positive affect during and following social interactions. In this study, 34 typically developing adolescents (ages 14–18 years) completed a social-reward fMRI task, a monetary-reward fMRI task, and a 2-week EMA protocol regarding their social and affective experiences. Adolescents with greater right posterior superior temporal sulcus/temporoparietal junction (pSTS/TPJ) response to social reward reported greater mean momentary emotional closeness. Neural response to social reward in the right pSTS/TPJ moderated how strongly momentary emotional closeness was associated with both concurrent positive affect and future peak happiness, but in different ways. Although emotional closeness had a significant positive association with concurrent positive affect among adolescents at both high and low right pSTS/TPJ response based on a follow-up simple slopes test, this association was stronger for adolescents with low right pSTS/TPJ response. In contrast, emotional closeness had a significant positive association with future peak happiness among adolescents with high right pSTS/TPJ response, but not among those with low right pSTS/TPJ response. These findings demonstrate the importance of neural response to social reward in key social processing regions for everyday experiences of emotional closeness and positive affect in the context of social interactions.
Journal Article
Posterior Superior Temporal Sulcus Responses Predict Perceived Pleasantness of Skin Stroking
by
Davidovic, Monika
,
Björnsdotter, Malin
,
Olausson, Håkan
in
afferents
,
Animal cognition
,
Autism
2016
Love and affection is expressed through a range of physically intimate gestures, including caresses. Recent studies suggest that posterior temporal lobe areas typically associated with visual processing of social cues also respond to interpersonal touch. Here, we asked whether these areas are selective to caress-like skin stroking. We collected functional magnetic resonance imaging data from 23 healthy participants and compared brain responses to skin stroking and vibration. We did not find any significant differences between stroking and vibration in the posterior temporal lobe; however, right posterior superior temporal sulcus (pSTS) responses predicted healthy participant's perceived pleasantness of skin stroking, but not vibration. These findings link right pSTS responses to individual variability in perceived pleasantness of caress-like tactile stimuli. We speculate that the right pSTS may play a role in the translation of tactile stimuli into positively valenced, socially relevant interpersonal touch and that this system may be affected in disorders associated with impaired attachment.
Journal Article
Aberrant activity and connectivity of the posterior superior temporal sulcus during social cognition in schizophrenia
by
Meyer-Lindenberg, Andreas
,
Zink, Mathias
,
Eisenacher, Sarah
in
Cognition
,
Cognition & reasoning
,
Cognitive ability
2017
Schizophrenia is associated with significant impairments in social cognition. These impairments have been shown to go along with altered activation of the posterior superior temporal sulcus (pSTS). However, studies that investigate connectivity of pSTS during social cognition in schizophrenia are sparse. Twenty-two patients with schizophrenia and 22 matched healthy controls completed a social-cognitive task for functional magnetic resonance imaging that allows the investigation of affective Theory of Mind (ToM), emotion recognition and the processing of neutral facial expressions. Moreover, a resting-state measurement was taken. Patients with schizophrenia performed worse in the social-cognitive task (main effect of group). In addition, a group by social-cognitive processing interaction was revealed for activity, as well as for connectivity during the social-cognitive task, i.e., patients with schizophrenia showed hyperactivity of right pSTS during neutral face processing, but hypoactivity during emotion recognition and affective ToM. In addition, hypoconnectivity between right and left pSTS was revealed for affective ToM, but not for neutral face processing or emotion recognition. No group differences in connectivity from right to left pSTS occurred during resting state. This pattern of aberrant activity and connectivity of the right pSTS during social cognition might form the basis of false-positive perceptions of emotions and intentions and could contribute to the emergence and sustainment of delusions.
Journal Article
Effects of High-Definition Transcranial Direct Current Stimulation Over the Left Fusiform Face Area on Face View Discrimination Depend on the Individual Baseline Performance
by
Zhang, Pan
,
Xiao, Wei
,
Liu, Na
in
Brain research
,
Electrical stimulation of the brain
,
Electrodes
2021
A basic human visual function is to identify objects from different viewpoints. Typically, the ability to discriminate face views based on in-depth orientation is necessary in daily life. Early neuroimaging studies have identified the involvement of the left fusiform face area (FFA) and the left superior temporal sulcus (STS) in face view discrimination. However, many studies have documented the important role of the right FFA in face processing. Thus, there remains controversy over whether one specific region or all of them are involved in discriminating face views. Thus, this research examined the influence of high-definition transcranial direct current stimulation (HD-tDCS) over the left FFA, left STS or right FFA on face view discrimination in three experiments. In experiment 1, eighteen subjects performed a face view discrimination task before and immediately, 10 min and 20 min after anodal, cathodal and sham HD-tDCS (20 min, 1.5 mA) over the left FFA in three sessions. Compared with sham stimulation, anodal and cathodal stimulation had no effects that were detected at the group level. However, the analyses at the individual level showed that the baseline performance negatively correlated with the degree of change after anodal tDCS, suggesting a dependence of the change amount on the initial performance. Specifically, tDCS decreased performance in the subjects with better baseline performance but increased performance in those with poorer baseline performance. In experiments 2 and 3, the same experimental protocol was used except that the stimulation site was the left STS or right FFA, respectively. Neither anodal nor cathodal tDCS over the left STS or right FFA influenced face view discrimination in group- or individual-level analyses. These results not only indicated the importance of the left FFA in face view discrimination but also demonstrated that individual initial performance should be taken into consideration in future research and practical applications.
Journal Article
5-day multi-session intermittent theta burst stimulation over bilateral posterior superior temporal sulci in adults with autism-a pilot study
2022
Background Theta burst stimulation (TBS), a patterned repetitive transcranial magnetic stimulation (rTMS) protocol with shorter simulation duration and lower stimulus intensity, could be a better protocol for individuals with autism spectrum disorder (ASD). Our study aimed to explore the impacts of intermittent TBS (iTBS) over the bilateral posterior superior temporal sulcus (pSTS) on intellectually able adults with ASD. Methods In this randomized, single-blinded, sham-controlled crossover trial, 13 adults with ASD completed iTBS for 5 consecutive days over the bilateral pSTS and inion (as a sham control) in a 16-weeks interval and in a randomly assigned order. The neuropsychological function was measured with the Wisconsin Card Sorting Test (WCST) for cognitive flexibility while the clinical outcomes were measured with both self-rate and parents-rate Autism Spectrum Quotient (AQ) before and after 5-day iTBS interventions. Results The results revealed significantly immediate effects of multi-session iTBS over the bilateral pSTS on parent-rate autistic symptoms in adults with ASD. The post-hoc analysis revealed the impacts of multi-session iTBS on cognitive flexibility were affected by baseline social-communicative impairment and baseline cognitive performance. Besides, the impacts of multi-session iTBS on clinical symptoms was affected by the concurrent psychotropic medication use and baseline autistic symptoms. Conclusions Given the caveat of the small sample size and discrepancy of multiple informants, this pilot study suggests the therapeutic potential of 5-day multi-session iTBS over the pSTS in adults with ASD. Individual factors modulating the response to rTMS should be explicitly considered in the future trial.
Journal Article
From teeth to brain: dental caries causally affects the cortical thickness of the banks of the superior temporal sulcus
by
Wang, Ziyao
,
Shen, Zhiyuan
,
Yu, Yajie
in
Alzheimer's disease
,
Analysis
,
Banks of the superior temporal sulcus
2024
Objectives
Dental caries is one of the most prevalent oral diseases and causes of tooth loss. Cross-sectional studies observed epidemiological associations between dental caries and brain degeneration disorders, while it is unknown whether dental caries causally affect the cerebral structures. This study tested whether genetically proxied DMFS (the sum of Decayed, Missing, and Filled tooth Surfaces) causally impacts the brain cortical structure using Mendelian randomization (MR).
Methods
The summary-level GWAS meta-analysis data from the GLIDE consortium were used for DMFS, including 26,792 participants. ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) consortium GWAS summary data of 51,665 patients were used for brain structure. This study estimated the causal effects of DMFS on the surface area (SA) and thickness (TH) of the global cortex and functional cortical regions accessed by magnetic resonance imaging (MRI). Inverse-variance weighted (IVW) was used as the primary estimate, the MR pleiotropy residual sum and outlier (MR-PRESSO), the MR-Egger intercept test, and leave-one-out analyses were used to examine the potential horizontal pleiotropy.
Results
Genetically proxied DMFS decreases the TH of the banks of the superior temporal sulcus (BANSSTS) with or without global weighted (weighted, β = − 0.0277 mm, 95% CI: − 0.0470 mm to − 0.0085 mm,
P
= 0.0047; unweighted, β = − 0.0311 mm, 95% CI: − 0.0609 mm to − 0.0012 mm,
P
= 0.0412). The causal associations were robust in various sensitivity analyses.
Conclusions
Dental caries causally decrease the cerebral cortical thickness of the BANKSSTS, a cerebral cortical region crucial for language-related functions, and is the most affected brain region in Alzheimer’s disease. This investigation provides the first evidence that dental caries causally affects brain structure, proving the existence of teeth-brain axes. This study also suggested that clinicians should highlight the causal effects of dental caries on brain disorders during the diagnosis and treatments, the cortical thickness of BANKSSTS is a promising diagnostic measurement for dental caries-related brain degeneration.
Journal Article