Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Supplementary eye field"
Sort by:
Broca's region
Broca's region has been in the news ever since scientists realized that particular cognitive functions could be localized to parts of the cerebral cortex. Its discoverer, Paul Broca, was one of the first researchers to argue for a direct connection between a concrete behavior—in this case, the use of language—and a specific cortical region. Today, Broca's region is perhaps the most famous part of the human brain, and for over a century, has persisted as the focus of intense research and numerous debates. The name has even penetrated mainstream culture through popular science and the theater. Broca's region is famous for a good reason: As language is one of the most distinctive human traits, the cognitive mechanisms that support it and the tissues in which these mechanisms are housed are also quite complex, and so have the potential to reveal a lot not only about how words, phrases, sentences, and grammatical rules are instantiated in neural tissue, but also, and more broadly, about how brain function relates to behavior. Paul Broca's discoveries were an important, driving force behind the more general effort to relate complex behavior to particular parts of the cerebral cortex, which, significantly, produced the first brain maps.
Principles of frontal lobe function
This book provides a review of historical and current research on the function of the frontal lobes and frontal systems of the brain. The content spans frontal lobe functions from birth to old age, from biochemistry and anatomy to rehabilitation, and from normal to disrupted function. The book covers a variety of disciplines including neurology, neuroscience, psychiatry, psychology, and health care.
New Cerebello-Cortical Pathway Involved in Higher-Order Oculomotor Control
The cerebellum and the basal ganglia play an important role in the control of voluntary eye movement associated with complex behavior, but little is known about how cerebellar projections project to cortical eye movement areas. Here we used retrograde transneuronal transport of rabies virus to identify neurons in the cerebellar nuclei that project via the thalamus to supplementary eye field (SEF) of the frontal cortex of macaques. After rabies injections into the SEF, many neurons in the restricted region, the ventral aspects of the dentate nucleus (DN), the caudal pole of the DN, and the posterior interpositus nucleus (PIN) were labeled disynaptically via the thalamus, whereas no neuron labeling was found in the anterior interpositus nucleus (AIN). The distribution of the labeled neurons was dorsoventrally different from that of DN and PIN neurons labeled from the motor cortex. In the basal ganglia, a large number of labeled neurons were confined to the dorsomedial portion of the internal segment of the globus pallidus (GPi) as more neurons were labeled in the inner portion of the GPi (GPii) than in the outer portion of the GPi (GPio). This is the first evidence of a projection between cerebellum/basal ganglia and the SEF that could enable the cerebellum to modulate the cognitive control of voluntary eye movement.
Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates
Neuroimaging modalities such as MRI and EEG are able to record from the whole brain, but this comes at the price of either limited spatiotemporal resolution or limited sensitivity. Here, we show that functional ultrasound imaging (fUS) of the brain is able to assess local changes in cerebral blood volume during cognitive tasks, with sufficient temporal resolution to measure the directional propagation of signals. In two macaques, we observed an abrupt transient change in supplementary eye field (SEF) activity when animals were required to modify their behaviour associated with a change of saccade tasks. SEF activation could be observed in a single trial, without averaging. Simultaneous imaging of anterior cingulate cortex and SEF revealed a time delay in the directional functional connectivity of 0.27 ± 0.07 s and 0.9 ± 0.2 s for both animals. Cerebral hemodynamics of large brain areas can be measured at high spatiotemporal resolution using fUS. Neuroimaging modalities such as MRI and EEG are able to record brain activity, but spatiotemporal resolution and sensitivity are limited. Here, the authors show how a recently developed method, functional ultrasound imaging (fUS), can measure brain activation during cognitive tasks in primates.
Cortical microcircuitry of performance monitoring
The medial frontal cortex enables performance monitoring, indexed by the error-related negativity (ERN) and manifested by performance adaptations. We recorded electroencephalogram over and neural spiking across all layers of the supplementary eye field, an agranular cortical area, in monkeys performing a saccade-countermanding (stop signal) task. Neurons signaling error production, feedback predicting reward gain or loss, and delivery of fluid reward had different spike widths and were concentrated differently across layers. Neurons signaling error or loss of reward were more common in layers 2 and 3 (L2/3), whereas neurons signaling gain of reward were more common in layers 5 and 6 (L5/6). Variation of error– and reinforcement-related spike rates in L2/3 but not L5/6 predicted response time adaptation. Variation in error-related spike rate in L2/3 but not L5/6 predicted ERN magnitude. These findings reveal novel features of cortical microcircuitry supporting performance monitoring and confirm one cortical source of the ERN.Concurrently recording neural spiking across cortical layers in a medial frontal area with EEG reveals the microcircuitry of error and reward signals, showing how neural circuits can realize executive control and produce error-related negativity.
Functional architecture of executive control and associated event-related potentials in macaques
The medial frontal cortex (MFC) enables executive control by monitoring relevant information and using it to adapt behavior. In macaques performing a saccade countermanding (stop-signal) task, we simultaneously recorded electrical potentials over MFC and neural spiking across all layers of the supplementary eye field (SEF). We report the laminar organization of neurons enabling executive control by monitoring the conflict between incompatible responses, the timing of events, and sustaining goal maintenance. These neurons were a mix of narrow-spiking and broad-spiking found in all layers, but those predicting the duration of control and sustaining the task goal until the release of operant control were more commonly narrow-spiking neurons confined to layers 2 and 3 (L2/3). We complement these results with evidence for a monkey homolog of the N2/P3 event-related potential (ERP) complex associated with response inhibition. N2 polarization varied with error-likelihood and P3 polarization varied with the duration of expected control. The amplitude of the N2 and P3 were predicted by the spike rate of different classes of neurons located in L2/3 but not L5/6. These findings reveal features of the cortical microcircuitry supporting executive control and producing associated ERPs. The authors examine the cortical microcircuitry relating to executive control in macaques. They describe three classes of neurons that signal response conflict, event timing, and maintenance of task goals, as well as their relations with event-related potentials that are associated with response inhibition.
Following Forrest Gump: Smooth pursuit related brain activation during free movie viewing
Most fMRI studies investigating smooth pursuit (SP) related brain activity have used simple synthetic stimuli such as a sinusoidally moving dot. However, real-life situations are much more complex and SP does not occur in isolation but within sequences of saccades and fixations. This raises the question whether the same brain networks for SP that have been identified under laboratory conditions are activated when following moving objects in a movie. Here, we used the publicly available studyforrest data set that provides eye movement recordings along with 3 ​T fMRI recordings from 15 subjects while watching the Hollywood movie “Forrest Gump”. All three major eye movement events, namely fixations, saccades, and smooth pursuit, were detected with a state-of-the-art algorithm. In our analysis, smooth pursuit (SP) was the eye movement of interest, while saccades were acting as the steady state of viewing behaviour due to their lower variability. For the fMRI analysis we used an event-related design modelling saccades and SP as regressors initially. Because of the interdependency of SP and content motion, we then added a new low-level content motion regressor to separate brain activations from these two sources. We identified higher BOLD-responses during SP than saccades bilaterally in MT+/V5, in middle cingulate extending to precuneus, and in the right temporoparietal junction. When the motion regressor was added, SP showed higher BOLD-response relative to saccades bilaterally in the cortex lining the superior temporal sulcus, precuneus, and supplementary eye field, presumably due to a confounding effect of background motion. Only parts of V2 showed higher activation during saccades in comparison to SP. Taken together, our approach should be regarded as proof of principle for deciphering brain activity related to SP, which is one of the most prominent eye movements besides saccades, in complex dynamic naturalistic situations.
Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation
In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF.
Revealing Whole-Brain Causality Networks During Guided Visual Searching
In our daily lives, we use eye movements to actively sample visual information from our environment (‘active vision’). However, little is known about how the underlying mechanisms are affected by goal-directed behavior. In a study of 31 participants, magnetoencephalography was combined with eye-tracking technology to investigate how interregional interactions in the brain change when engaged in two distinct forms of active vision: freely viewing natural images or performing a guided visual search. Regions of interest with significant fixation-related evoked activity were identified with spatiotemporal cluster permutation testing. Using generalized partial directed coherence, we show that, in response to fixation onset, a bilateral cluster consisting of four regions (posterior insula, transverse temporal gyrus, superior temporal gyrus, and supramarginal gyrus) formed a highly-connected network during free viewing. A comparable network also emerged in the right hemisphere during the search task, with the right supramarginal gyrus acting as a central node for information exchange. The results suggest that all four regions are vital to visual processing and guiding attention. Furthermore, the right supramarginal gyrus was the only region where activity during fixations on the search target was significantly negatively correlated with search response times. Based on our findings, we hypothesize that, following a fixation, the right supramarginal gyrus supplies the right supplementary eye field with new information to update the priority map guiding the eye movements during the search task.
Predictive saccades in children and adults: A combined fMRI and eye tracking study
Saccades were assessed in 21 adults (age 24 years, SD = 4) and 15 children (age 11 years, SD = 1), using combined functional magnetic resonance imaging (fMRI) and eye-tracking. Subjects visually tracked a point on a horizontal line in four conditions: time and position predictable task (PRED), position predictable (pPRED), time predictable (tPRED) and visually guided saccades (SAC). Both groups in the PRED but not in pPRED, tPRED and SAC produced predictive saccades with latency below 80 ms. In task versus group comparisons, children's showed less efficient learning compared to adults for predictive saccades (adults = 48%, children = 34%, p = 0.05). In adults brain activation was found in the frontal and occipital regions in the PRED, in the intraparietal sulcus in pPRED and in the frontal eye field, posterior intraparietal sulcus and medial regions in the tPRED task. Group-task interaction was found in the supplementary eye field and visual cortex in the PRED task, and the frontal cortex including the right frontal eye field and left frontal pole, in the pPRED condition. These results indicate that, the basic visuomotor circuitry is present in both adults and children, but fine-tuning of the activation according to the task temporal and spatial demand mature late in child development.