Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,929
result(s) for
"Support Vector Machine (SVM)"
Sort by:
Prediction of Driver’s Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques
by
Bong, Jae-Hwan
,
Park, Jooyoung
,
Park, Shinsuk
in
Accuracy
,
advanced driver assistance system (ADAS)
,
artificial neural network (ANN)
2017
Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS) is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver’s intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver’s intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN) models, and the augmented information is fed to a support vector machine (SVM) to detect the driver’s intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver’s intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics.
Journal Article
Comparison of Machine Learning Algorithms for the Quality Assessment of Wearable ECG Signals Via Lenovo H3 Devices
by
Zhu, Songsheng
,
Liu, Bin
,
Fu, Fan
in
Algorithms
,
Biomedical Engineering and Bioengineering
,
Cardiovascular disease
2021
Purpose
Electrocardiogram (ECG) signals collected from wearable devices are easily corrupted with surrounding noise and artefacts, where the signal-to-noise ratio (SNR) of wearable ECG signals is significantly lower than that from hospital ECG machines. To meet the requirements for monitoring heart disease via wearable devices, eliminating useless or poor-quality ECG signals (e.g., lead-falls and low SNRs) can be solved by signal quality assessment algorithms.
Methods
To compensate for the deficiency of the existing ECG quality assessment system, a wearable ECG signal dataset from heart disease patients collected by Lenovo H3 devices was constructed. Then, this paper compares the performance of three machine learning algorithms, i.e., the traditional support vector machine (SVM), least-squares SVM (LS-SVM) and long short-term memory (LSTM) algorithms. Different non-morphological signal quality indices (i.e., the approximate entropy (ApEn), sample entropy (SaEn), fuzzy measure entropy (FMEn), Hurst exponent (HE), kurtosis (K) and power spectral density (PSD) features) extracted from the original ECG signals are fed into the three algorithms as input.
Results
The true positive rate, true negative rate, sensitivity and accuracy are used to evaluate the performance of each method, and the LSTM algorithm achieves the best results on these metrics (97.14%, 86.8%, 97.46% and 95.47%, respectively).
Conclusions
Among the three algorithms, the LSTM-based quality assessment method is the most suitable for the signals collected by the Lenovo H3 devices. The results also show that the combination of statistical features can effectively evaluate the quality of ECG signals.
Journal Article
Enhancing Big Data Feature Selection Using a Hybrid Correlation-Based Feature Selection
2021
This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search (BFS), and dominance-based rough set approach (DRSA) methods. This study aims to enhance the classifier’s performance in decision analysis by eliminating uncorrelated and inconsistent data values. The proposed method, named CFS-DRSA, comprises several phases executed in sequence, with the main phases incorporating two crucial feature extraction tasks. Data reduction is first, which implements a CFS method with a BFS algorithm. Secondly, a data selection process applies a DRSA to generate the optimized dataset. Therefore, this study aims to solve the computational time complexity and increase the classification accuracy. Several datasets with various characteristics and volumes were used in the experimental process to evaluate the proposed method’s credibility. The method’s performance was validated using standard evaluation measures and benchmarked with other established methods such as deep learning (DL). Overall, the proposed work proved that it could assist the classifier in returning a significant result, with an accuracy rate of 82.1% for the neural network (NN) classifier, compared to the support vector machine (SVM), which returned 66.5% and 49.96% for DL. The one-way analysis of variance (ANOVA) statistical result indicates that the proposed method is an alternative extraction tool for those with difficulties acquiring expensive big data analysis tools and those who are new to the data analysis field.
Journal Article
Using machine learning to predict student difficulties from learning session data
by
Sadaqat Ali
,
Zhang, Wu
,
Hussain, Mushtaq
in
Academic achievement
,
Algorithms
,
Artificial intelligence
2019
The student’s performance prediction is an important research topic because it can help teachers prevent students from dropping out before final exams and identify students that need additional assistance. The objective of this study is to predict the difficulties that students will encounter in a subsequent digital design course session. We analyzed the data logged by a technology-enhanced learning (TEL) system called digital electronics education and design suite (DEEDS) using machine learning algorithms. The machine learning algorithms included an artificial neural networks (ANNs), support vector machines (SVMs), logistic regression, Naïve bayes classifiers and decision trees. The DEEDS system allows students to solve digital design exercises with different levels of difficulty while logging input data. The input variables of the current study were average time, total number of activities, average idle time, average number of keystrokes and total related activity for each exercise during individual sessions in the digital design course; the output variables were the student(s) grades for each session. We then trained machine learning algorithms on the data from the previous session and tested the algorithms on the data from the upcoming session. We performed k-fold cross-validation and computed the receiver operating characteristic and root mean square error metrics to evaluate the models’ performances. The results show that ANNs and SVMs achieve higher accuracy than do other algorithms. ANNs and SVMs can easily be integrated into the TEL system; thus, we would expect instructors to report improved student’s performance during the subsequent session.
Journal Article
Topological Properties of Resting-State fMRI Functional Networks Improve Machine Learning-Based Autism Classification
2019
Automatic algorithms for disease diagnosis are being thoroughly researched for use in clinical settings. They usually rely on pre-identified biomarkers to highlight the existence of certain problems. However, finding such biomarkers for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) has challenged researchers for many years. With enough data and computational power, machine learning (ML) algorithms can be used to interpret the data and extract the best biomarkers from thousands of candidates. In this study, we used the fMRI data of 816 individuals enrolled in the Autism Brain Imaging Data Exchange (ABIDE) to introduce a new biomarker extraction pipeline for ASD that relies on the use of graph theoretical metrics of fMRI-based functional connectivity to inform a support vector machine (SVM). Furthermore, we split the dataset into 5 age groups to account for the effect of aging on functional connectivity. Our methodology achieved better results than most state-of-the-art investigations on this dataset with the best model for the >30 years age group achieving an accuracy, sensitivity, and specificity of 95, 97, and 95%, respectively. Our results suggest that measures of centrality provide the highest contribution to the classification power of the models.
Journal Article
Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling
by
Tanabe, Kazutoshi
,
Onodera, Natsuo
,
Kaihara, Mikio
in
Accuracy
,
Artificial Intelligence
,
Biochemistry
2010
The Carcinogenicity Reliability Database (CRDB) was constructed by collecting experimental carcinogenicity data on about 1,500 chemicals from six sources, including IARC, and NTP databases, and then by ranking their reliabilities into six unified categories. A wide variety of 911 organic chemicals were selected from the database for QSAR modeling, and 1,504 kinds of different molecular descriptors were calculated, based on their 3D molecular structures as modeled by the Dragon software. Positive (carcinogenic) and negative (non-carcinogenic) chemicals containing various substructures were counted using atom and functional group count descriptors, and the statistical significance of ratios of positives to negatives was tested for those substructures. Very few were judged to be strongly related to carcinogenicity, among substructures known to be responsible for carcinogens as revealed from biomedical studies. In order to develop QSAR models for the prediction of the carcinogenicities of a wide variety of chemicals with a satisfactory performance level, the relationship between the carcinogenicity data with improved reliability and a subset of significant descriptors selected from 1,504 Dragon descriptors was analyzed with a support vector machine (SVM) method: the classification function (SVC) for weighted data in LIBSVM program was used to classify chemicals into two carcinogenic categories (positive or negative), where weights were set depending on the reliabilities of the carcinogenicity data. The quality and stability of the models presented were tested by performing a dual cross–validation procedure. A single SVM model as the first step was developed for all the 911 chemicals using 250 selected descriptors, achieving an overall accuracy level, i.e., positive and negative correct estimate, of about 70%. In order to improve the accuracy of the final model, the 911 chemicals were classified into 20 mutually overlapping subgroups according to contained substructures, a specific SVM model was optimized for each subgroup, and the predicted carcinogenicities of the 911 chemicals were determined by the majorities of the outputs of the corresponding SVM models. The model developed on the basis of grouping of chemicals into 20 substructures predicts the carcinogenicities of a wide variety of chemicals with a satisfactory overall accuracy of approximately 80%.
Journal Article
Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol
2019
Major depressive disorder (MDD) is one of the leading causes of disability; however, current MDD diagnosis methods lack an objective assessment of depressive symptoms. Here, a machine learning approach to separate MDD patients from healthy controls was developed based on linear and nonlinear heart rate variability (HRV), which reflects the autonomic cardiovascular regulation.
HRV data were collected from 37 MDD patients and 41 healthy controls during five 5-min experimental phases: the baseline, a mental stress task, stress recovery, a relaxation task, and relaxation task recovery. The experimental protocol was designed to assess the autonomic responses to stress and recovery. Twenty HRV indices were extracted from each phase, and a total of 100 features were used for classification using a support vector machine (SVM). SVM-recursive feature elimination (RFE) and statistical filter were employed to perform feature selection.
We achieved 74.4% accuracy, 73% sensitivity, and 75.6% specificity with two optimal features selected by SVM-RFE, which were extracted from the stress task recovery and mental stress phases. Classification performance worsened when individual phases were used separately as input data, compared to when all phases were included. The SVM-RFE using nonlinear and Poincaré plot HRV features performed better than that using the linear indices and matched the best performance achieved by using all features.
We demonstrated the machine learning-based diagnosis of MDD using HRV analysis. Monitoring the changes in linear and nonlinear HRV features for various autonomic nervous system states can facilitate the more objective identification of MDD patients.
•Machine learning-based diagnosis of major depression using HRV is demonstrated.•ANS stimulation is crucial to revealing altered autonomic reactivity in depression.•Including nonlinear HRV features substantially improves classification performance.
Journal Article
Design of Machine Learning Solutions to Post-Harvest Classification of Vegetal Species
2023
This paper presents a machine learning approach to automatically classifying post-harvest vegetal species. Color images of vegetal species were applied to convolutional neural networks (CNNs) and support vector machine (SVM) classifiers. We focused on okra as the target vegetal species and classified it into two quality types. However, our approach could also be applied to other species. The machine learning solution consists of several components, and each design process and its combinations are essential for classification quality. Therefore, we carefully investigated their effects on classification accuracy. Through our experimental evaluation, we confirmed the following: (1) in color space selection, HLG (hue, lightness, and green) and HSL (hue, saturation, and lightness) are essential for vegetal species; (2) suitable preprocessing techniques are required owing to the complexity of the data and noise load; and (3) the diversity extension of learning image data by mixing different datasets obtained under different conditions is quite effective in reducing the overfitting possibility. The results of this study will assist AI practitioners in the design and development of post-harvest classifications based on machine learning.
Journal Article
Classification model for accuracy and intrusion detection using machine learning approach
2021
In today’s cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms—Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)—were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.
Journal Article
A novel hybrid model using teaching–learning-based optimization and a support vector machine for commodity futures index forecasting
2018
The analysis and prediction of financial time-series data are difficult, and are the most complicated tasks concerned with improving investment decisions. In this study, we forecasted a financial derivatives instrument (the commodity futures contract index) using techniques based on recently developed machine learning techniques. These methods have been shown to perform remarkably well in other applications. In particular, we developed a hybrid method that combines a support vector machine (SVM) with teaching–learning-based optimization (TLBO). The proposed SVM–TLBO model avoids user-specified control parameters, which are required when using other optimization methods. We assessed the viability and efficiency of this hybrid model by forecasting the daily closing prices of the COMDEX commodity futures index, traded in the Multi Commodity Exchange of India Limited. Our experimental results show that the proposed model is effective and performs better than the particle swarm optimization (PSO) + SVM hybrid and standard SVM models. For example, the proposed model improved the MAE by 65.87 % (1-day-ahead forecast), 55.83 % (3-days-ahead forecast), and 67.03 % (5-days-ahead forecast), when compared with standard SVM regression.
Journal Article