Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,086
result(s) for
"Surface disinfection"
Sort by:
Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: a review
by
Vossebein, Lutz
,
Song, Xinyu
,
Zille, Andrea
in
Analysis
,
Biomedical and Life Sciences
,
Biomedicine
2019
Background
“Ready-to-use” disinfecting wipes (also known as pre-impregnated disinfecting wipe) are broadly used in food industry and domestic situations. Their application in hospitals and healthcare centres for decontamination of medical devices and surfaces is steadily increasing because of their convenient implementation in practice and reliable performance. Beside their acceptable compliance and easy application, literature reported the disinfection failure due to the interaction between textile substrate and active ingredients, which can highly increase the risk of an infection outbreak. This review aims to call attention to the wide range of variables affecting the disinfectant-impregnated wipes’ (DIWs) disinfection performances in hospitals.
Methods
A systematic literature search based on the five categories i. wipes, ii. disinfectants, iii. Application methods, iv. interaction between wipes and active ingredients and v. wiping strategy which can possibly influence the disinfection effectiveness of DIWs was conducted by Google scholar. Studies regarding the efficacy evaluation of DIWs in clinical applications were also reviewed from the National Centre for Biotechnology Information database.
Results
Variables that impact on the disinfection performance of disinfectant-impregnated wipes in surface disinfection in hospitals were summarised and critically discussed. In addition to the information, current disinfectant-impregnated wipes’ decontamination efficacy test standards were reviewed, and different standards exposed some disadvantage in their testing design.
Conclusion
Various parameters contribute to the impact of DIWs disinfection performance in practice. The interaction between disinfectant active ingredients and the wiping materials barricades their broad application in hospitals. More studies of the DIWs’ disinfection efficacy in clinical practice are in need. Current standards evaluating the DIWs’ efficacy are required to improve for more realistic condition simulation and differentiating between mechanical removal of inoculum from a surface and chemical inactivation of the test microbe.
Journal Article
Handwashing and disinfection precautions taken by U.S. adults to prevent coronavirus disease 2019, Spring 2020
2020
Objectives
The objectives of this study were to assess self-reported hygiene precautions taken by U.S. adults during spring 2020 to prevent coronavirus disease 2019 (COVID-19) and to identify demographic characteristics associated with these hygiene precautions.
Results
We obtained data from Porter Novelli Public Services’s national survey,
Spring ConsumerStyles
, conducted March 19–April 9, 2020 among a nationally representative random sample of 6463 U.S. adults aged 18 years or older. We present data from the survey question: “What, if any, precautions are you taking to prevent coronavirus?”. Respondents replied yes or no to the following precautions: washing hands often with soap and water and disinfecting surfaces at home and work often. Most respondents reported taking hygiene-related precautions to prevent COVID-19; more respondents reported handwashing (93%) than disinfecting surfaces (74%). Men, younger respondents, those with lower income and education levels, and respondents in self-rated poor health had lower reported rates of both handwashing and disinfecting surfaces. Communications about hygiene precautions for COVID-19 prevention may need to target sub-populations with the greatest gaps in hygiene-related practices. Research identifying barriers to these practices and developing effective messaging could inform and improve these communications.
Journal Article
Back to Basics: Choosing the Appropriate Surface Disinfectant
by
Fumagalli, Laura
,
Mazzotta, Sarah
,
Artasensi, Angelica
in
Antibiotics
,
Antiinfectives and antibacterials
,
antimicrobial
2021
From viruses to bacteria, our lives are filled with exposure to germs. In built environments, exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of having good biosafety measures and practices. To prevent infection from spreading and to maintain the barrier, disinfection and hygiene habits are crucial, especially when the microorganism can persist and survive on surfaces. Contaminated surfaces are called fomites and on them, microorganisms can survive even for months. As a consequence, fomites serve as a second reservoir and transfer pathogens between hosts. The knowledge of microorganisms, type of surface, and antimicrobial agent is fundamental to develop the best approach to sanitize fomites and to obtain good disinfection levels. Hence, this review has the purpose to briefly describe the organisms, the kind of risk associated with them, and the main classes of antimicrobials for surfaces, to help choose the right approach to prevent exposure to pathogens.
Journal Article
Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum
by
Ngan, Ha Thi My
,
Nhut, Duong Tan
,
Tung, Hoang Thanh
in
acclimation
,
agar
,
antioxidant enzymes
2021
Micropropagation has proven to be an effective method for large-scale plant production in a short time and a useful tool for plant breeding. Microbial contamination is one of the most difficult micropropagation challenges, resulting in reduced plant quality and loss of valuable stocks. Therefore, sterilization of culture media is a critical step in plant micropropagation. However, sterilized media might reduce the activity of plant growth regulators and nutritional components of culture media. The sterilization effects of silver nanoparticles (AgNP) on the growth of expiants and culture media were examined. The treatment with 250 ppm AgNP for 15 to 20 min of 4-wk-old ex vitro leaves proved optimal for controlling the contamination. Furthermore, the Murashige and Skoog medium containing 4 ppm AgNP resulted in 100% medium disinfection (no contamination) after 4 wk of culture. The plantlets obtained from non-sterilized MS medium (NoM) containing 4 ppm AgNP and 4 g L⁻¹ agar gave similar results as the control medium with 8 g L⁻¹ agar and the absence of AgNP. Large scale culture systems using NoM in large plastic containers of two different sizes (NoM1 and NoM2) could produce quality plantlets. Chrysanthemum plantlets in the NoM1 system showed higher antioxidant enzyme activities of ascorbate peroxidase and Superoxide dismutase than plantlets in the autoclaved medium. Furthermore, the plantlets from NoM were better acclimatized under greenhouse conditions than those from the autoclaved medium (AuM) system. The developmental stages (flower buds and blooming time) of NoM1 and NoM2 plantlets, were 1 wk earlier than those from the AuM system. The successful use of AgNP as a sterilizer and as a component of culture media would reduce the cost of micropropagation and improve plants' quality.
Journal Article
Skin and hard surface disinfection against Candida auris – What we know today
2024
Candida auris has emerged as a global healthcare threat, displaying resistance to important healthcare antifungal therapies. Infection prevention and control protocols have become paramount in reducing transmission of C. auris in healthcare, of which cleaning and disinfection plays an important role. Candida albicans is used as a surrogate yeast for yeasticidal claims of disinfection products, but reports have been made that sensitivity to disinfectants by C. auris differs from its surrogate. In this review, we aimed to compile the information reported for products used for skin and hard surface disinfection against C. auris in its planktonic or biofilm form. A comparison was made with other Candida species, and information were gathered from laboratory studies and observations made in healthcare settings.
Journal Article
Occupational inhalation exposure during surface disinfection—exposure assessment based on exposure models compared with measurement data
2024
BackgroundFor healthcare workers, surface disinfections are daily routine tasks. An assessment of the inhalation exposure to hazardous substances, in this case the disinfectant´s active ingredients, is necessary to ensure workers safety. However, deciding which exposure model is best for exposure assessment remains difficult.ObjectiveThe aim of the study was to evaluate the applicability of different exposure models for disinfection of small surfaces in healthcare settings.MethodsMeasurements of the air concentration of active ingredients in disinfectants (ethanol, formaldehyde, glutaraldehyde, hydrogen peroxide, peroxyacetic acid) together with other exposure parameters were recorded in a test chamber. The measurements were performed using personal and stationary air sampling. In addition, exposure modelling was performed using three deterministic models (unsteady 1-zone, ConsExpo and 2-component) and one modifying-factor model (Stoffenmanager®). Their estimates were compared with the measured values using various methods to assess model quality (like accuracy and level of conservatism).ResultsThe deterministic models showed overestimation predominantly in the range of two- to fivefold relative to the measured data and high conservatism for all active ingredients of disinfectants with the exception of ethanol. With Stoffenmanager® an exposure distribution was estimated for ethanol, which was in good accordance with the measured data.Impact statementTo date, workplace exposure assessments often involve expensive and time consuming air measurements. Reliable exposure models can be used to assess occupational inhalation exposure to hazardous substances, in this case surface disinfectants. This study describes the applicability of three deterministic and one modifying-factor model for disinfection of small surfaces in healthcare settings, in direct comparison to measurements performed and will facilitate future exposure assessments at these workplaces.
Journal Article
UV-C Light-Based Surface Disinfection: Analysis of Its Virucidal Efficacy Using a Bacteriophage Model
by
Rudhart, Stefan A.
,
Günther, Frank
,
Hoch, Stephan
in
Bacteriophages
,
Carcinogens
,
COVID-19 - prevention & control
2022
Background: The reprocessing of medical devices has become more complex due to increasing hygiene requirements. Previous studies showed satisfactory bactericidal disinfection effects of UV-C light in rigid and flexible endoscopes. Especially in the context of the current COVID-19 pandemic, virucidal properties are of high importance. In the present study, the virucidal efficacy of UV-C light surface disinfection was analyzed. Methods: MS-2 bacteriophages were applied to the test samples and irradiated by UV-C light using the UV Smart D25 device; unirradiated test samples were used as controls. A dilution series of the samples was mixed with 1 × 108 Escherichia coli and assayed. Results: 8.6 × 1012 pfu could be harvested from the unprocessed test samples. In the control group without UV-C exposure, a remaining contamination of 1.2 × 1012 pfu was detected, resulting in a procedural baseline reduction rate with a LOG10 reduction factor of 0.72. The LOG10 reduction factor was found to be 3.0 after 25 s of UV-C light exposure. After 50 and 75 s of UV-C radiation LOG10 reduction factors 4.2 and 5.9, respectively, were found, with all reductions being statistically significantly different to baseline. Conclusions: The tested UV system seems to provide a significant virucidal effect after a relatively short irradiation time.
Journal Article
Effectiveness of Plasma-Treated Hydrogen Peroxide Mist Disinfection in Various Hospital Environments
2021
Hospital environments are associated with a high risk of infection. As plasma-treated hydrogen peroxide mist disinfection has a higher disinfection efficacy, we tested the efficacy of plasma-treated hydrogen peroxide mist disinfection on several surfaces in various hospital environments. Disinfection was performed in 23 rooms across different hospital environments, including hospital wards, outpatient departments (OPDs), and emergency rooms. A total of 459 surfaces were swabbed before/after disinfection. Surfaces were also divided into plastic, metal, wood, leather, ceramic, silicone, and glass for further analyses. Only gram-positive bacteria were statistically analyzed because the number of gram-negative bacteria and mold was insufficient. Most colony-forming units (CFUs) of gram-positive bacteria were observed in OPDs and on leather materials before disinfection. The proportion of surfaces that showed a percentage decrease in CFU values of more than 90% after disinfection were as follows: OPDs (85%), hospital wards (99%), and emergency rooms (100%); plastic (97%), metal (83%), wood (84%), leather (81%), and others (87%). Plasma-treated hydrogen peroxide mist disinfection resulted in a significant decrease in the CFU values of gram-positive bacteria in various environments. Plasma-treated hydrogen peroxide mist disinfection is an effective and efficient method of disinfecting various hospital environments.
Journal Article
Recontamination of Healthcare Surfaces by Repeated Wiping with Biocide-Loaded Wipes: “One Wipe, One Surface, One Direction, Dispose” as Best Practice in the Clinical Environment
by
Best, Emma L.
,
Edwards, Nicholas W. M.
,
Wilcox, Mark H.
in
Antimicrobial agents
,
Bacteria
,
Contact angle
2020
The wiping of high-touch healthcare surfaces made of metals, ceramics and plastics to remove bacteria is an accepted tool in combatting the transmission of healthcare-associated infections (HCAIs). In practice, surfaces may be repeatedly wiped using a single wipe, and the potential for recontamination may be affected by various factors. Accordingly, we studied how the surface to be wiped, the type of fibre in the wipe and how the presence of liquid biocide affected the degree of recontamination. Experiments were conducted using metal, ceramic and plastic healthcare surfaces, and two different wipe compositions (hygroscopic and hydrophilic), with and without liquid biocide. Despite initially high removal efficiencies of >70% during initial wiping, all healthcare surfaces were recontaminated with E. coli, S. aureus and E. faecalis when wiped more than once using the same wipe. Recontamination occurred regardless of the fibre composition of the wipe or the presence of a liquid biocide. The extent of recontamination by E. coli, S. aureus and E. faecalis bacteria also increased when metal healthcare surfaces possessed a higher microscale roughness (<1 μm), as determined by Atomic Force Microscopy (AFM). The high propensity for healthcare surfaces to be re-contaminated following initial wiping suggests that a “One wipe, One surface, One direction, Dispose” policy should be implemented and rigorously enforced.
Journal Article
Comparison of different surface disinfection treatments of drinking water facilities from a corrosion and environmental perspective
by
Claesson, Per Martin
,
Romanovski, Valentin
,
Hedberg, Yolanda Susanne
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Calcium
2020
Surface disinfection of water facilities such as water wells requires measures that can remove pathogens from the walls to ensure a high drinking water quality, but many of these measures might increase corrosion of the contact surfaces (often highly pure steel) and affect the environment negatively due to disinfectant-contaminated waste sludge and wastewater. Today, most treatments worldwide are based on hypochlorites. We investigated the extent of corrosion during treatments of steel at relevant conditions of ozone, sodium, and calcium hypochlorite for drinking water preparation, utilizing weight loss, electrochemical, solution analytical, and surface analytical methods. The ozone treatment caused significantly less corrosion as compared with sodium or calcium hypochlorite with 150–250 mg/L active chlorine. Hypochlorite or other chlorine-containing compounds were trapped in corrosion products after the surface disinfection treatment with hypochlorite, and this risked influencing subsequent corrosion after the surface disinfection treatment. A life cycle impact assessment suggested ozone treatment to have the lowest negative effects on human health, ecosystems, and resources. Calcium hypochlorite showed the highest negative environmental impact due to its production phase. Our study suggests that ozone surface disinfection treatments are preferable as compared with hypochlorite treatments from corrosion, economic, and environmental perspectives.
Journal Article