Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
64,269 result(s) for "Surface temperature"
Sort by:
An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST
Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively.
The Pliocene Model Intercomparison Project Phase 2: Large-scale Climate Features and Climate Sensitivity
The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 ∘C relative to the pre-industrial era with a multi-model mean value of 3.2 ∘C. Annual mean total precipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.
Marine heatwaves under global warming
Marine heatwaves (MHWs) are periods of extreme warm sea surface temperature that persist for days to months and can extend up to thousands of kilometres . Some of the recently observed marine heatwaves revealed the high vulnerability of marine ecosystems and fisheries to such extreme climate events. Yet our knowledge about past occurrences and the future progression of MHWs is very limited. Here we use satellite observations and a suite of Earth system model simulations to show that MHWs have already become longer-lasting and more frequent, extensive and intense in the past few decades, and that this trend will accelerate under further global warming. Between 1982 and 2016, we detect a doubling in the number of MHW days, and this number is projected to further increase on average by a factor of 16 for global warming of 1.5 degrees Celsius relative to preindustrial levels and by a factor of 23 for global warming of 2.0 degrees Celsius. However, current national policies for the reduction of global carbon emissions are predicted to result in global warming of about 3.5 degrees Celsius by the end of the twenty-first century , for which models project an average increase in the probability of MHWs by a factor of 41. At this level of warming, MHWs have an average spatial extent that is 21 times bigger than in preindustrial times, last on average 112 days and reach maximum sea surface temperature anomaly intensities of 2.5 degrees Celsius. The largest changes are projected to occur in the western tropical Pacific and Arctic oceans. Today, 87 per cent of MHWs are attributable to human-induced warming, with this ratio increasing to nearly 100 per cent under any global warming scenario exceeding 2 degrees Celsius. Our results suggest that MHWs will become very frequent and extreme under global warming, probably pushing marine organisms and ecosystems to the limits of their resilience and even beyond, which could cause irreversible changes.
Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes
Decadal climate prediction presumes there are decadal-timescale processes and mechanisms that, if initialized properly in models, potentially provide predictive skill more than one or two years into the future. Candidate mechanisms involve Pacific decadal variability and Atlantic multidecadal variability, elements of which involve slow fluctuations of tropical Pacific and Atlantic sea surface temperatures (SSTs) from positive anomalies (positive phase) to negative anomalies (negative phase). Here we use model experiments to show that there tends to be a weak opposite-sign SST response in the tropical Pacific when observed SSTs are specified in the Atlantic, while there is a weak same-sign SST response in the tropical Atlantic when observed SSTs are specified in the tropical Pacific. Net surface heat flux in the Atlantic and ocean dynamics in the Pacific play contrasting roles in the ocean response to specified SSTs in the respective basins. We propose that processes in the Pacific and Atlantic are sequentially interactive through the atmospheric Walker circulation along with contributions from midlatitude teleconnections for the Atlantic response to the Pacific. Atmospheric Walker circulation results in a two-way interaction between decadal-scale sea surface temperature variability in the Atlantic and Pacific, according to pacemaker climate modelling experiments.
Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I
The monthly Extended Reconstructed Sea Surface Temperature (ERSST) dataset, available on global 2° × 2° grids, has been revised herein to version 4 (v4) from v3b. Major revisions include updated and substantially more complete input data from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) release 2.5; revised empirical orthogonal teleconnections (EOTs) and EOT acceptance criterion; updated sea surface temperature (SST) quality control procedures; revised SST anomaly (SSTA) evaluation methods; updated bias adjustments of ship SSTs using the Hadley Centre Nighttime Marine Air Temperature dataset version 2 (HadNMAT2); and buoy SST bias adjustment not previously made in v3b. Tests show that the impacts of the revisions to ship SST bias adjustment in ERSST.v4 are dominant among all revisions and updates. The effect is to make SST 0.1°–0.2°C cooler north of 30°S but 0.1°–0.2°C warmer south of 30°S in ERSST.v4 than in ERSST.v3b before 1940. In comparison with the Met Office SST product [the Hadley Centre Sea Surface Temperature dataset, version 3 (HadSST3)], the ship SST bias adjustment in ERSST.v4 is 0.1°–0.2°C cooler in the tropics but 0.1°–0.2°C warmer in the midlatitude oceans both before 1940 and from 1945 to 1970. Comparisons highlight differences in long-term SST trends and SSTA variations at decadal time scales among ERSST.v4, ERSST.v3b, HadSST3, and Centennial Observation-Based Estimates of SST version 2 (COBE-SST2), which is largely associated with the difference of bias adjustments in these SST products. The tests also show that, when compared with v3b, SSTAs in ERSST.v4 can substantially better represent the El Niño/La Niña behavior when observations are sparse before 1940. Comparisons indicate that SSTs in ERSST.v4 are as close to satellite-based observations as other similar SST analyses.
Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries
El Niño events differ substantially in their spatial pattern and intensity. Canonical Eastern Pacific El Niño events have sea surface temperature anomalies that are strongest in the far eastern equatorial Pacific, whereas peak ocean warming occurs further west during Central Pacific El Niño events. The event types differ in their impacts on the location and intensity of temperature and precipitation anomalies globally. Evidence is emerging that Central Pacific El Niño events have become more common, a trend that is projected by some studies to continue with ongoing climate change. Here we identify spatial and temporal patterns in observed sea surface temperatures that distinguish the evolution of Eastern and Central Pacific El Niño events in the tropical Pacific. We show that these patterns are recorded by a network of 27 seasonally resolved coral records, which we then use to reconstruct Central and Eastern Pacific El Niño activity for the past four centuries. We find a simultaneous increase in Central Pacific events and a decrease in Eastern Pacific events since the late twentieth century that leads to a ratio of Central to Eastern Pacific events that is unusual in a multicentury context. Compared to the past four centuries, the most recent 30 year period includes fewer, but more intense, Eastern Pacific El Niño events.Compared to the past few centuries, Central Pacific El Niño events have become more frequent, whereas the number of Eastern Pacific events has declined in the most recent decades, according to reconstructions from a network of seasonally resolved coral records.
Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends
Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE). While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM) system, which is then found to be associated with an anomalous warm, high-pressure system in the middle–lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900–2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.
The Pacific Decadal Oscillation, Revisited
The Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within themeteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of processes often more independent of the tropics than is observed. Finally, it is suggested that the assessment of PDO-related regional climate impacts, reconstruction of PDO-related variability into the past with proxy records, and diagnosis of Pacific variability within coupled GCMs should all account for the effects of these different processes, which only partly represent the direct forcing of the atmosphere by North Pacific Ocean SSTs.
The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation
The Nanjing University of Information Science and Technology Earth System Model version 3 (NESM v3) has been developed, aiming to provide a numerical modeling platform for cross-disciplinary Earth system studies, project future Earth climate and environment changes, and conduct subseasonal-to-seasonal prediction. While the previous model version NESM v1 simulates the internal modes of climate variability well, it has no vegetation dynamics and suffers considerable radiative energy imbalance at the top of the atmosphere and surface, resulting in large biases in the global mean surface air temperature, which limits its utility to simulate past and project future climate changes. The NESM v3 has upgraded atmospheric and land surface model components and improved physical parameterization and conservation of coupling variables. Here we describe the new version's basic features and how the major improvements were made. We demonstrate the v3 model's fidelity and suitability to address global climate variability and change issues. The 500-year preindustrial (PI) experiment shows negligible trends in the net heat flux at the top of atmosphere and the Earth surface. Consistently, the simulated global mean surface air temperature, land surface temperature, and sea surface temperature (SST) are all in a quasi-equilibrium state. The conservation of global water is demonstrated by the stable evolution of the global mean precipitation, sea surface salinity (SSS), and sea water salinity. The sea ice extents (SIEs), as a major indication of high-latitude climate, also maintain a balanced state. The simulated spatial patterns of the energy states, SST, precipitation, and SSS fields are realistic, but the model suffers from a cold bias in the North Atlantic, a warm bias in the Southern Ocean, and associated deficient Antarctic sea ice area, as well as a delicate sign of the double ITCZ syndrome. The estimated radiative forcing of quadrupling carbon dioxide is about 7.24 W m-2, yielding a climate sensitivity feedback parameter of -0.98 W m-2 K-1, and the equilibrium climate sensitivity is 3.69 K. The transient climate response from the 1 % yr-1 CO2 (1pctCO2) increase experiment is 2.16 K. The model's performance on internal modes and responses to external forcing during the historical period will be documented in an accompanying paper.
The role of sea surface temperature variability in changes to global surface air temperature related to two periods of warming slowdown since 1940
Over the last century, the global mean surface air temperature (SAT) has experienced two periods of warming slowdown (hiatuses), namely 1940–1975 and 1998–2012, as well as showing well-defined interdecadal oscillations. Previous studies have focused mainly on the most recent hiatus, and little is known about the period between 1940 and 1975. From the point of view of the sea surface temperature (SST), there are two aspects of interest; i.e., the climatological SST and SST variability. In this paper, observational and modelling evidence is used to show that, compared with the climatological SST, SST variability has been the main cause of the slowdown in rate of increase in SAT since 1940. In addition, the observational data and simulation results show that SST variability had a greater impact on the slowdown in rate of increase in SAT from 1940 to 1975 (− 1.2 × 10 −3  °C/year) than from 1998 to 2012 (− 5.7 × 10 −3  °C/year). The SAT change over the period 1940–1975 (1.0 × 10 −4  °C/year) was less affected by the climatological SST forcing experiment than that over the period 1998–2012 (− 5.0 × 10 −4  °C/year). Comparing with 1940–1975, the SAT change over the period 1998–2012 was much affected by the global SAT long-term warming. The distributions of wind stress and atmospheric pressure both indicate that, although the eastern Pacific Ocean played an important role in influencing the global SAT trend between 1998 and 2012, it made little contribution to changes in global SAT between 1940 and 1975. In addition, from the perspective of seasonality, the interdecadal variation of SAT over these two periods was a seasonally dependent phenomenon. Over the period 1940–1975, the annual SAT trend essentially followed the summer SAT trend, whereas between 1998 and 2012, winter was the dominant season of annual SAT change.