Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,028 result(s) for "Surfaces, Algebraic."
Sort by:
Theta functions on varieties with effective anti-canonical class
We show that a large class of maximally degenerating families of We anticipate that wall structures can be constructed quite generally from maximal degenerations. The construction given here then provides the homogeneous coordinate ring of the mirror degeneration along with a canonical basis. The appearance of a canonical basis of sections for certain degenerations points towards a good compactification of moduli of certain polarized varieties via stable pairs, generalizing the picture for K3 surfaces [Gross, Hacking, Keel, and Siebert,
Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix.
Deformation and Unobstructedness of Determinantal Schemes
A closed subscheme First of all, we compute an upper The work contains many examples which illustrate the results obtained and a considerable number of open problems; some of them are collected as conjectures in the final section.
Birationally rigid Fano threefold hypersurfaces
We prove that every quasi-smooth weighted Fano threefold hypersurface in the 95 families of Fletcher and Reid is birationally rigid.
Noncommutative Homological Mirror Functor
We formulate a constructive theory of noncommutative Landau-Ginzburg models mirror to symplectic manifolds based on Lagrangian Floer theory. The construction comes with a natural functor from the Fukaya category to the category of matrix factorizations of the constructed Landau-Ginzburg model. As applications, it is applied to elliptic orbifolds, punctured Riemann surfaces and certain non-compact Calabi-Yau threefolds to construct their mirrors and functors. In particular it recovers and strengthens several interesting results of Etingof-Ginzburg, Bocklandt and Smith, and gives a unified understanding of their results in terms of mirror symmetry and symplectic geometry. As an interesting application, we construct an explicit global deformation quantization of an affine del Pezzo surface as a noncommutative mirror to an elliptic orbifold.
Geometry at the Frontier
Articles in this volume are based on lectures given at three conferences on Geometry at the Frontier, held at the Universidad de la Frontera, Pucón, Chile in 2016, 2017, and 2018.The papers cover recent developments on the theory of algebraic varieties--in particular, of their automorphism groups and moduli spaces. They will be of interest to anyone working in the area, as well as young mathematicians and students interested in complex and algebraic geometry.
Inflectionary Invariants for Isolated Complete Intersection Curve Singularities
We investigate the role played by curve singularity germs in the enumeration of inflection points in families of curves acquiring singular members. Let
Higher genus curves in mathematical physics and arithmetic geometry : AMS Special Session Higher Genus Curves and Fibrations in Mathematical Physics and Arithmetic Geometry, January 8, 2016, Seattle, Washington
This volume contains the proceedings of the AMS Special Session on Higher Genus Curves and Fibrations in Mathematical Physics and Arithmetic Geometry, held on January 8, 2016, in Seattle, Washington.Algebraic curves and their fibrations have played a major role in both mathematical physics and arithmetic geometry. This volume focuses on the role of higher genus curves; in particular, hyperelliptic and superelliptic curves in algebraic geometry and mathematical physics.The articles in this volume investigate the automorphism groups of curves and superelliptic curves and results regarding integral points on curves and their applications in mirror symmetry. Moreover, geometric subjects are addressed, such as elliptic $K$3 surfaces over the rationals, the birational type of Hurwitz spaces, and links between projective geometry and abelian functions.