Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
69 result(s) for "Sus scrofa - embryology"
Sort by:
Conceptus interferon gamma is essential for establishment of pregnancy in the pig
Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG–/–) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG–/– conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells, which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG–/– conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG–/– embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1), and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs. Summary sentence Ablation of IFNG in the pig conceptus causes conceptus degeneration and endometrial inflammation.
Transcriptomic analysis of long non coding RNAs and their association with TET family genes in Sus scrofa embryo
Noncoding RNAs play diverse and crucial roles across various cell types, with many long noncoding RNAs (lncRNAs) implicated in germ cell development. Although lncRNAs remain largely uncharacterized, they play essential roles in key biological processes, including X-inactivation, pluripotency, genomic imprinting, and cell differentiation. In this study, we conducted a comprehensive bioinformatics analysis using publicly accessible single-cell RNA sequencing data (scRNA-seq) from Gene Expression Omnibus repository. The dataset includes four distinct cell types from different stages of porcine embryonic development: E11 derived epiblast cells, E14 derived somatic and primordial germ cells, E31 derived primordial germ cells. Our analysis identified a large number of lncRNAs and assessed their expression patterns, highlighting their critical roles in embryonic development. We also explored the relationship between lncRNAs and protein-coding genes, particularly focusing on the ten eleven translocation (TET) family genes, which are known for their role in DNA demethylation during early embryogenesis. We identified approximately 0.15 million lncRNA transcripts in porcine early embryos. Additionally, we investigated the differential expression profiles of both lncRNAs and protein-coding genes across different cell types, observing both similarities and differences in gene expression as the embryo differentiates. Finally, we used LncTar to predict potential interactions between co-expressed TET family genes and differentially expressed lncRNAs, providing further insight into their functional relationships in early embryonic development.
Butylparaben Is Toxic to Porcine Oocyte Maturation and Subsequent Embryonic Development Following In Vitro Fertilization
Parabens are widely used in personal care products due to their antimicrobial effects. Although the toxicity of parabens has been reported, little information is available on the toxicity of butylparaben (BP) on oocyte maturation. Therefore, we investigated the effects of various concentrations of BP (0 μM, 100 μM, 200 μM, 300 μM, 400 μM, and 500 μM) on the in vitro maturation of porcine oocytes. BP supplementation at a concentration greater than 300 μM significantly reduced the proportion of complete cumulus cell expansion and metaphase II oocytes compared to the control. The 300 μM BP significantly decreased fertilization, cleavage, and blastocyst formation rates with lower total cell numbers and a higher rate of apoptosis in blastocysts compared to the control. The BP-treated oocytes showed significantly higher reactive oxygen species (ROS) levels, and lower glutathione (GSH) levels than the control. BP significantly increased the aberrant mitochondrial distribution and decreased mitochondrial function compared to the control. BP-treated oocytes exhibited significantly higher percentage of γ-H2AX, annexin V-positive oocytes and expression of LC3 than the control. In conclusion, we demonstrated that BP impaired oocyte maturation and subsequent embryonic development, by inducing ROS generation and reducing GSH levels. Furthermore, BP disrupted mitochondrial function and triggered DNA damage, early apoptosis, and autophagy in oocytes.
Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs
MicroRNAs (miRNAs) play a vital role in muscle development by binding to messenger RNAs (mRNAs). Based on prenatal skeletal muscle at 33, 65 and 90 days post-coitus (dpc) from Landrace, Tongcheng and Wuzhishan pigs, we carried out integrated analysis of miRNA and mRNA expression profiling. We identified 33, 18 and 67 differentially expressed miRNAs and 290, 91 and 502 mRNA targets in Landrace, Tongcheng and Wuzhishan pigs, respectively. Subsequently, 12 mRNAs and 3 miRNAs differentially expressed were validated using quantitative real-time PCR (qPCR) and 5 predicted miRNA targets were confirmed via dual luciferase reporter or western blot assays. We identified a set of miRNAs and mRNA genes differentially expressed in muscle development. Gene ontology (GO) enrichment analysis suggests that the miRNA targets are primarily involved in muscle contraction, muscle development and negative regulation of cell proliferation. Our data indicated that more mRNAs are regulated by miRNAs at earlier stages than at later stages of muscle development. Landrace and Tongcheng pigs also had longer phases of myoblast proliferation than Wuzhishan pigs. This study will be helpful to further explore miRNA-mRNA interactions in myogenesis and aid to uncover the molecular mechanisms of muscle development and phenotype variance in pigs.
Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency
An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we supplemented pig oocytes selected for mitochondrial DNA deficiency, reduced cytoplasmic maturation and lower developmental competence, with autologous populations of mitochondrial isolate at fertilization. Supplementation increased development to blastocyst, the final stage of preimplantation development, and promoted mitochondrial DNA replication prior to embryonic genome activation in mitochondrial DNA deficient oocytes but not in oocytes with normal levels of mitochondrial DNA. Blastocysts exhibited transcriptome profiles more closely resembling those of blastocysts from developmentally competent oocytes. Furthermore, mitochondrial supplementation reduced gene expression patterns associated with metabolic disorders that were identified in blastocysts from mitochondrial DNA deficient oocytes. These results demonstrate the importance of the oocyte’s mitochondrial DNA investment in fertilization outcome and subsequent embryo development to mitochondrial DNA deficient oocytes.
Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses
Adrenomedullin (ADM) is an evolutionarily conserved multifunctional peptide hormone that regulates implantation, embryo spacing, and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, the expression of CALCRL, RAMP2, and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10–7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation, and placentation in pigs. Summary sentence Our study suggests that adrenomedullin plays a significant role in uterine receptivity and conceptus growth and development, via the stimulation of cell proliferation and activation of MTORC1 signaling pathway in the porcine conceptus trophectoderm. Graphical Abstract
Meat Science and Muscle Biology Symposium: in utero nutrition related to fetal development, postnatal performance, and meat quality of pork
Intrauterine growth restriction (IUGR) occurs naturally in pigs and leads to low birth weight of piglets due to undernutrition caused by placental insufficiency. For 2 main reasons, low birth weight causes economic loss. First, low birth weight pigs have a greater mortality and increasing the litter size causes more low birth weight piglets within litters. Second, surviving low birth weight piglets have reduced performance (i.e., ADG, feed conversion rate, and percentage meat). To develop dietary strategies for preventing IUGR, knowledge of the biological basis of IUGR is required. Muscle fiber number, formed during myogenesis, is correlated positively with performance traits and has been shown in several studies to be reduced in low birth weight pigs. Postnatal muscle hypertrophy is due to satellite cell number per fiber at birth and their rate of proliferation as well as protein deposition (i.e., protein synthesis and degradation). Previous studies and some recent ones indicate that low birth weight littermates in mice are born with fewer satellite cells and studies on pigs show that the rate of satellite cell proliferation may vary within litters. Proteomics studies show that protein synthesis and degradation is downregulated in IUGR pigs and low birth weight pigs also produce meat with less tenderness. Alternative maternal feeding strategies to prevent IUGR have been examined. Increasing maternal global nutrition had no beneficial effect on performance and muscle growth traits in several studies. Feeding excess maternal dietary protein also did not influence muscle growth traits whereas moderately decreased maternal dietary protein may decrease muscle fiber number and performance. On the other hand, addition of L-carnitine to the maternal gestation or lactation diet may increase birth and weaning weights or the muscle fiber number, respectively, in low birth weight pig offspring. Finally, promising data have been obtained on reproductive traits in pigs after addition of functional AA, such as arginine and glutamine, to the gestational diet. Although much is known about the biological basis of IUGR, we still need to learn much more about the mode of action before maternal dietary strategies can be developed to prevent IUGR.
Tauroursodeoxycholic acid/TGR5 signaling promotes survival and early development of glucose-stressed porcine embryos
Conditions of impaired energy and nutrient homeostasis, such as diabetes and obesity, are associated with infertility. Hyperglycemia increases endoplasmic reticulum stress as well as oxidative stress and reduces embryo development and quality. Oxidative stress also causes deoxyribonucleic acid damage, which impairs embryo quality and development. The natural bile acid tauroursodeoxycholic acid reduces endoplasmic reticulum stress and rescues developmentally incompetent late-cleaving embryos, as well as embryos subjected to nuclear stress, suggesting the endoplasmic reticulum stress response, or unfolded protein response, and the genome damage response are linked. Tauroursodeoxycholic acid acts via the Takeda-G-proteinreceptor-5 to alleviate nuclear stress in embryos. To evaluate the role of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling in embryo unfolded protein response, we used a model of glucose-induced endoplasmic reticulum stress. Embryo development was impaired by direct injection of tauroursodeoxycholic acid into parthenogenetically activated oocytes, whereas it was improved when tauroursodeoxycholic acid was added to the culture medium. Attenuation of the Takeda-G-protein-receptor-5 precluded the positive effect of tauroursodeoxycholic acid supplementation on development of parthenogenetically activated and fertilized embryos cultured under standard conditions and parthenogenetically activated embryos cultured with excess glucose. Moreover, attenuation of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling induced endoplasmic reticulum stress, oxidative stress and cell survival genes, but decreased expression of pluripotency genes in parthenogenetically activated embryos cultured under excess glucose conditions. These data suggest that Takeda-G-protein-receptor-5 signaling pathways link the unfolded protein response and genome damage response. Furthermore, this study identifies Takeda-G-protein-receptor-5 signaling as a potential target for mitigating fertility issues caused by nutrient excess-associated blastomere stress and embryo death. Summary sentence Tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling pathways are activated in the pre-implantation porcine embryo in response to glucose-induced stimulation of the unfolded protein response to facilitate blastomere survival and embryo development.
Amniotic fluid metabolomics and biochemistry analysis provides novel insights into the diet-regulated foetal growth in a pig model
Foetal loss and intrauterine growth restriction are major problems in mammals, but there are few effective ways in preventing it. Intriguingly, chitosan oligosaccharide (COS), a biomaterial derived from chitosan, can promote foetal survival and growth. Therefore, we have investigated how COS affects foetal survival and growth in a pig model. Fifty-two sows were divided into two treatment groups (n = 26) and fed either solely a control diet or a control diet that includes 100 mg/kg COS. Amniotic fluid and foetus samples from six sows that were of average body weight in each group were collected on gestation day 35. We applied a 1 H NMR-based metabolomics approach combined with biochemistry analysis to track the changes that occurred in the amniotic fluid of pregnant sows after COS intervention. Maternal COS inclusion had enhanced ( P  < 0.05) the foetal survival rate and size at 35 days. COS supplementation had both increased ( P  < 0.05) SOD, CAT and T-AOC activities and elevated ( P  < 0.05) IL-10, IgG and IgM concentrations in the amniotic fluid. Moreover, COS had affected ( P  < 0.05) the amniotic fluid’s lysine, citrate, glucose and hypoxanthine levels. Overall, COS inclusion induced amniotic fluid antioxidant status and metabolic profiles modifications characterising improvements in foetal survival and growth in a pig model.
Fast prenatal development of the NPY neuron system in the neocortex of the European wild boar, Sus scrofa
Knowledge on cortical development is based mainly on small rodents besides primates and carnivores, all being altricial nestlings. Ungulates are precocial and born with nearly mature sensory and motor systems. Almost no information is available on ungulate brain development. Here, we analyzed European wild boar cortex development, focusing on the neuropeptide Y immunoreactive (NPY-ir) neuron system in dorsoparietal cortex from E35 to P30. Transient NPY-ir neuron types including archaic cells of the cortical plate and axonal loop cells of the subplate which appear by E60 concurrent with the establishment of the ungulate brain basic sulcal pattern. From E70, NPY-ir axons have an axon initial segment which elongates and shifts closer towards the axon’s point of origin until P30. From E85 onwards (birth at E114), NPY-ir neurons in cortical layers form basket cell-like local and Martinotti cell-like ascending axonal projections. The mature NPY-ir pattern is recognizable at E110. Together, morphologies are conserved across species, but timing is not: in pig, the adult pattern largely forms prenatally.