Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Sveconorwegian"
Sort by:
Tracking the prograde P–T path of Precambrian eclogite using Ti-in-quartz and Zr-in-rutile geothermobarometry
A Fe–Ti-rich garnet, clinopyroxene, and quartz eclogite sample from the 1.0 Ga Sveconorwegian orogen, SW Sweden, contains abundant quartz, rutile, and zircon in distinct micro-textural sites: garnet core, garnet rim, and matrix, constituting an ideal case for investigation of the behavior of Zr-in-rutile and Ti-in-quartz at high-pressure and temperature. A P–T path, peaking at 16.5–19 kbar and 850–900 °C, has been constrained independently for the same rock by pseudosection modelling; input pressures from this model were used for trace element geothermometry of each garnet micro-textural domain. Trace element thermo(baro)metry, based on in situ Secondary Ion Mass Spectrometry analyses of Ti contents in quartz and Zr contents in rutile, yields P–T estimates of progressive crystallization of quartz and rutile along the prograde metamorphic path. For inclusions in the garnet cores, Zr-in-rutile geothermometry yields 700–715 °C and Ti-in-quartz 620–640 °C at 7 kbar. For inclusions in the garnet rims, temperature estimates are 760–790 °C (Zr-in-rutile) and 740–920 °C (Ti-in-quartz) at 12–18 kbar. Finally, matrix rutile records 775–800 °C and locally ~ 900 °C, and quartz records temperatures up to 900 °C at 18 kbar. Ti-in-quartz estimates for the metamorphic peak (inclusions in the garnet rims and matrix) conform to the pseudosection, but appear too low for the early prograde stage (garnet cores), possibly due to lack of equilibrium at T < 700 °C. The pseudosection shows that rutile was produced by continuous ilmenite breakdown during the early stages of prograde metamorphism, a reaction that was completed at ~ 730 °C. Rutile grains in the garnet rims and the matrix grew subsequently larger by recrystallization of previously produced rutile. However, recrystallized rutile does not predominantly record peak temperatures, but instead yield 745–840 °C between 12 and 18 kbar. In the pseudosection, this temperature range broadly coincides with a stage during which (Ti-bearing) hornblende was consumed and clinopyroxene produced (i.e., dehydration); the Zr contents thus appear to reflect the last stage of efficient rutile recrystallization, catalysed by fluids released by the dehydration of hornblende preceding the metamorphic peak. Concurrently, combination of the isopleths for Ti content in quartz and Zr content in rutile (i.e. independent from pseudosection modelling) yields pressure and temperature conditions in almost perfect agreement with the P–T path as deduced from the pseudosection. The variation in Ti concentration in quartz is small regardless of crystal size, and the Ti-in-quartz geothermometer provides both precise and accurate peak temperatures of 875–920 °C, without a significant diffusional reequilibration. The lack of significant Ti diffusion in quartz is consistent with an inferred short residence time at high temperature. This study illustrates that Zr-in-rutile and Ti-in-quartz geothermobarometry can robustly constrain prograde P–T conditions and yield further insights into recrystallization processes at high temperature. The combination of these methods and integration of the results with pseudosection modelling is a versatile tool for investigating the petrologic history of high-grade rocks.
The Grenville–Sveconorwegian orogen in the high Arctic
Throughout the high Arctic, from northern Canada (Pearya) to eastern Greenland, Svalbard, Franz Josef Land, Novaya Zemlya, Taimyr and Severnaya Zemlya and, at lower Arctic latitudes, in the Urals and the Scandinavian Caledonides, there is evidence of the Grenville–Sveconorwegian Orogen. The latest orogenic phase (c. 950 Ma) is well exposed in the Arctic, but only minor Mesoproterozoic fragments of this orogen occur on land. However, detrital zircons in Neoproterozoic and Palaeozoic successions provide unambiguous Mesoproterozoic to earliest Neoproterozoic (c. 950 Ma) signatures. This evidence strongly suggests that the Grenville–Sveconorwegian Orogen continues northwards from type areas in southeastern Canada and southwestern Scandinavia, via the North Atlantic margins to the high Arctic continental shelves. The widespread distribution of late Mesoproterozoic detrital zircons far to the north of the Grenville–Sveconorwegian type areas is usually explained in terms of long-distance transport (thousands of kilometres) of either sediments by river systems from source to sink, or of slices of lithosphere (terranes) moved on major transcurrent faults. Both of these interpretations involve much greater complexity than the hypothesis favoured here, the former involving recycling of the zircons from the strata of initial deposition into those of their final residence and the latter requiring a diversity of microcontinents. Neither explains either the fragmentary evidence for the presence of Grenville–Sveconorwegian terranes in the high Arctic, or the composition of the basement of the continental shelves. The presence of the Grenville–Sveconorwegian Orogen in the Arctic, mainly within the hinterland and margins of the Caledonides and Timanides, has profound implications not only for the reconstructions of the Rodinia supercontinent in early Neoproterozoic time, but also the origin of these Neoproterozoic and Palaeozoic mountain belts.
Repeated brittle reactivations of a pre-existing plastic shear zone: combined K–Ar and 40Ar–39Ar geochronology of the long-lived (>700 Ma) Himdalen–Ørje Deformation Zone, SE Norway
Brittle reactivation of plastic shear zones is frequently observed in geologically old terranes. To better understand such deformation zones, we have studied the >700 Ma long structural history of the Himdalen–Ørje Deformation Zone (HØDZ) in SE Norway by K–Ar and 40Ar–39Ar geochronology, and structural characterization. Several generations of mylonites make up the ductile part of HØDZ, the Ørje Shear Zone. A 40Ar–39Ar white mica plateau age of 908.6 ± 7.0 Ma constrains the timing of extensional reactivation of the Ørje mylonite. The mylonite is extensively reworked during brittle deformation events by the Himdalen Fault. 40Ar–39Ar plateau ages of 375.0 ± 22.7 Ma and 351.7 ± 4.4 Ma from pseudotachylite veins and K–Ar ages of authigenic illite in fault gouge at c. 380 Ma are interpreted to date initial brittle deformation, possibly associated with the Variscan orogeny. Major brittle deformation during the Early–Mid Permian Oslo Rift is documented by a 40Ar–39Ar pseudotachylite plateau age of 294.6 ± 5.2 Ma and a K–Ar fault gouge age of c. 270 Ma. The last datable faulting event is constrained by the finest size fraction in three separate gouges at c. 200 Ma. The study demonstrates that multiple geologically significant K–Ar ages can be constrained from fault gouges within the same fault core by combining careful field sampling, structural characterization, detailed mineralogy and illite crystallinity analysis. We suggest that initial localization of brittle strain along plastic shear zones is controlled by mechanical anisotropy of parallel-oriented, throughgoing phyllosilicate-rich foliation planes within the mylonitic fabric.
Evaluation of deep geothermal exploration drillings in the crystalline basement of the Fennoscandian Shield Border Zone in south Sweden
The 3.1- and 3.7-km-deep FFC-1 and DGE-1 geothermal explorations wells drilled into the Precambrian crystalline basement on the southern margin of the Fennoscandian Shield are evaluated regarding experiences from drilling, geological conditions, and thermal properties. Both wells penetrate an approximately 2-km-thick succession of sedimentary strata before entering the crystalline basement, dominated by orthogneiss, metabasite and amphibolite of the (1.1–0.9 Ga) Eastern Interior Sveconorwegian Province. The upper c. 400 m of the basement is in FFC-1 severely fractured and water-bearing which disqualified the use of percussion air drilling and conventional rotary drilling was, therefore, performed for the rest of the borehole. The evaluation of the rotary drillings in FFC-1 and DGE-1 showed that the average bit life was very similar, 62 m and 68 m, respectively. Similarly, the average ROP varied between 2 and 4 m/h without any preferences regarding bit-type (PDC or TCI) or geology. A bottomhole temperature of 84.1 °C was measured in FFC-1 borehole with gradients varying between 17.4 and 23.5 °C/km for the main part of the borehole. The calculated heat flow varies between 51 and 66 mW/m2 and the average heat production is 3.0 µW/m3. The basement in FFC-1 is, overall, depleted in uranium and thorium in comparison to DGE-1 where the heat productivity is overall higher with an average of 5.8 µW/m3. The spatial distribution of fractures was successfully mapped using borehole imaging logs in FFC-1 and shows a dominance of N–S oriented open fractures, a fracture frequency varying between 0.85 and 2.49 frac/m and a fracture volumetric density between 1.68 and 3.39 m2/m3. The evaluation of the two boreholes provides insight and new empirical data on the thermal properties and fracturing of the concealed crystalline basement in the Fennoscandian Shield Border Zone that, previously, had only been assessed by assumptions and modelling. The outcome of the drilling operation has also provided insight regarding the drilling performance in the basement and statistical data on various drill bits used. The knowledge gained is important in feasibility studies of deep geothermal projects in the crystalline basement in south Sweden.
Metamorphic titanite–zircon pseudomorphs after igneous zirconolite
The formation of metamorphic zircon after baddeleyite is a well-known reaction that can be used to date the metamorphism of igneous silica-undersaturated rocks. By contrast, metamorphic minerals formed after igneous zirconolite have rarely been reported. In this paper, we document metamorphic titanite + zircon pseudomorphs formed from the metamorphic breakdown of igneous zirconolite in syenodiorite and syenite, in the southeastern Sveconorwegian Province, Sweden. Water-rich fluid influx during tectonometamorphism in epidote–amphibolite-facies metamorphic conditions caused the release of silica during a metamorphic reaction involving igneous feldspar and pyroxene and the simultaneous breakdown of igneous Zr-bearing phases. Typical titanite + zircon intergrowths are elongated or platy titanite crystals speckled with tiny inclusions of zircon. Most intergrowths are smaller than 15 µm; some are subrounded in shape. Locally, bead-like grains of titanite and zircon are intergrown with silicate minerals. The precursor igneous zirconolite was found preserved only in a sample of near-pristine igneous syenodiorite, as remnant grains of mainly < 2 µm in size. Two somewhat larger crystals, 8 and 12 µm, allowed semiquantitative confirmation using microprobe analysis. Analogous with zircon pseudomorphs after baddeleyite, titanite + zircon pseudomorphs after zirconolite potentially offer dating of the metamorphic reaction, although the small size of the crystals makes dating with today's techniques challenging. The scarcity of reports of zirconolite and pseudomorphs reflects that they are either rare or possibly overlooked.
Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia
Tectonic processes associated with supercontinent cycles result in a variety of basin types, and the isotopic dating of detrital minerals within sedimentary sequences assists palaeogeographical reconstructions. Basins located along the Laurentia-Baltica margin prior to assembly of Rodinia at 1.2-1.0 Ga are dominated by zircon detritus derived from contemporaneous magmatic arcs. Basins formed during assembly are also dominated by zircon detritus with ages similar to that of sediment accumulation, reflecting syn-collisional magmatism and rapid exhumation of the developing Grenville-Sveconorwegian orogen. Post-collision intracratonic basins lack input from syn-depositional magmatism, and are dominated by significantly older detritus derived from the mountain range as well as its foreland. Basins formed during late Neoproterozoic to Cambrian breakup of Rodinia are divisible into two types. Those within the Caledonides lie on the Grenville-Sveconorwegian foreland and incorporate Archaean and Palaeoproterozoic detritus derived from the cratonic interior and Mesoproterozoic detritus derived from the eroded remnants of the orogen. In the Appalachian orogen, such basins are dominated by Mesoproterozoic detritus with older detritus forming only a minor component, suggesting restricted input from the cratonic interior as a result of either the Grenville orogen still forming a drainage divide or the formation of rift shoulders.
Lead Isotopes and the Sources of Granitic Magmas: The Sveconorwegian Granite and Pegmatite Province of Southern Norway
Lead isotope analyses of K-feldspar from late Sveconorwegian (900–1000 Ma) granitic pegmatites and A-type, ferroan granitic intrusions in four different areas of southern Norway analyzed by laser-ablation inductively coupled plasma source mass spectrometry (LA-ICPMS) give compositions in the range 206Pb/204Pb = 16.637 to 17.555, 207Pb/204Pb = 15.445 to 15.534, 208Pb/204Pb = 36.317 to 37.459. These compositions broadly overlap with the initial compositions estimated from previously published solution TIMS whole-rock and feldspar Pb isotope analyses of late Sveconorwegian granitic plutons across the region, suggesting that magmas forming A-type granite plutons and granitic pegmatites have been derived from broadly similar source rocks, i.e., from a continental crust that initially formed in Palaeoproterozoic time (ca. 2.10–1.86 Ga), and subsequently underwent intracrustal partial melting, differentiation and rejuvenation via mafic underplating in Mesoproterozoic time.
Geological Position of the Junggar Terrane (Southern Kazakhstan) in the Structure of the Rodinia Supercontinent: Results of Research of Late-Precambrian Metasedimentary Complexes
The article presents the results of studying of the Precambrian metasedimentary sequences of the Junggar terrane located in Southern Kazakhstan. In the structure of the Junggar terrane, we studied the rocks of the Sarychabyn Group and Kosagash Formation. Petrogeochemical data, combined with the results of U‒Pb and Lu‒Hf isotope-geochronological studies of detrital zircons, indicate that the Sarychabyn Group and Kosagash Formation are a single stratigraphic unit that accumulated during the Late Mesoproterozoic and Early Neoproterozoic (approximately 1026–920 Ma). The Mesoproterozoic and Paleoproterozoic complexes are believed to be the main sources of detrital zircon populations. These complexes include medium- and high grade metabasites and metapelites, as well as felsic igneous rocks that formed from different sources. The evolution of the Junggar terrane in the Late Precambrian is similar to the tectonomagmatic evolution of the Aktau–Mointy, Yili, Issyk-Kul, Chinese Central Tien Shan, and the Northern Kazakhstan terranes. At that time, the terranes were a single continental block that was located near the Sveconorwegian orogen in the western part of the Baltica paleocontinent during the formation of the Rodinia supercontinent.
Detrital Zircon Geochronology of the Volyn-Orsha Sedimentary Basin in Western Ukraine: Implications for the Meso-Neoproterozoic History of Baltica and Possible Link to Amazonia and the Grenvillian—Sveconorwegian—Sunsas Orogenic Belts
We used LA-ICP-MS U-Pb data for detrital zircon to constrain the Maximum Depositional Age (MDA) and provenance of clastic sedimentary rocks of the Volyn-Orsha sedimentary basin, which filled an elongated (~625 × 250 km) depression in SW Baltica and attained ~900 m in thickness. Eighty-six zircons out of one hundred and three yielded concordant dates, with most of them (86%) falling in the time interval between 1655 ± 3 and 1044 ± 16 Ma and clustering in two peaks at ca. 1630 and 1230 Ma. The remaining zircons yielded dates older than 1800 Ma. The MDA is defined by a tight group of three zircons with a weighted mean age of 1079 ± 8 Ma. This age corresponds to the time of a ~90° clockwise rotation of Baltica and the formation of the Grenvillian—Sveconorwegian—Sunsas orogenic belts. Subsidence was facilitated by the presence of eclogites derived from subducted oceanic crust. The sediments of the Orsha sub-basin in the northeastern part of the basin were derived from the local crystalline basement, whereas the sediments in the Volyn sub-basin, extending to the margin of Baltica, were transported from the orogen between Laurentia, Baltica and Amazonia.
Caledonian terrane amalgamation of Svalbard: detrital zircon provenance of Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen
The tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded by c. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.