Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,455
result(s) for
"Sympatry"
Sort by:
Virome analysis of two sympatric bat species (Desmodus rotundus and Molossus molossus) in French Guiana
by
Génomique (Plate-Forme) - Genomics Platform ; Institut Pasteur [Paris] (IP)
,
Tirera, Sourakhata
,
de Thoisy, Benoit
in
Agriculture
,
Analysis
,
Animals
2017
Environmental disturbances in the Neotropics (e.g., deforestation, agriculture intensifica-tion, urbanization) contribute to an increasing risk of cross-species transmission of microorganisms and to disease outbreaks due to changing ecosystems of reservoir hosts. Although Amazonia encompasses the greatest diversity of reservoir species, the outsized viral population diversity (virome) has yet to be investigated. Here, through a metagenomic approach, we identified 10,991 viral sequences in the saliva and feces of two bat species, Desmodus rotundus (hematophagous), trapped in two different caves surrounded by primary lowland forest, and Molossus molossus (insectivorous), trapped in forest and urban habitats. These sequences are related to 51 viral families known to infect a wide range of hosts (i.e., bacteria , plants, insects and vertebrates). Most viruses detected reflected the diet of bat species, with a high proportion of plant and insect-related viral families for M. molossus and a high proportion of vertebrate-related viral families for D. rotundus, highlighting its influence in shaping the viral diversity of bats. Lastly, we reconstructed the phylogenetic relationships for five vertebrate-related viral families (Nairoviridae, Circoviridae, Retroviridae, Herpesviri-dae, Papillomaviridae). The results showed highly supported clustering with other viral sequences of the same viral family hosted by other bat species, highlighting the potential association of viral diversity with the host's diet. These findings provide significant insight into viral bat diversity in French Guiana belonging to the Amazonian biome and emphasize that habitats and the host's dietary ecology may drive the viral diversity in the bat communities investigated.
Journal Article
Contrasting signatures of genomic divergence during sympatric speciation
2020
The transition from ‘well-marked varieties’ of a single species into ‘well-defined species’—especially in the absence of geographic barriers to gene flow (sympatric speciation)—has puzzled evolutionary biologists ever since Darwin
1
,
2
. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process
3
. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs
4
, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories
5
. Here, within a young species complex of neotropical cichlid fishes (
Amphilophus
spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.
Population genomic analyses of Midas cichlid fishes in young Nicaraguan crater lakes suggest that sympatric speciation is promoted by polygenic architectures.
Journal Article
Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers
by
Miller, Eliot T.
,
Leighton, Gavin M.
,
Lees, Alexander C.
in
631/158/857
,
631/181/2476
,
Abiotic factors
2019
Organismal appearances are shaped by selection from both biotic and abiotic drivers. For example, Gloger’s rule describes the pervasive pattern that more pigmented populations are found in more humid areas. However, species may also converge on nearly identical colours and patterns in sympatry, often to avoid predation by mimicking noxious species. Here we leverage a massive global citizen-science database to determine how biotic and abiotic factors act in concert to shape plumage in the world’s 230 species of woodpeckers. We find that habitat and climate profoundly influence woodpecker plumage, and we recover support for the generality of Gloger’s rule. However, many species exhibit remarkable convergence explained neither by these factors nor by shared ancestry. Instead, this convergence is associated with geographic overlap between species, suggesting occasional strong selection for interspecific mimicry.
Many abiotic and biotic factors shape the macroevolution of phenotype, but these factors are rarely disentangled across large radiations. Here, Miller et al. investigate plumage evolution across woodpeckers, finding influences of habitat and climate, but also convergence apparently driven by mimicry
Journal Article
The importance of intrinsic postzygotic barriers throughout the speciation process
2020
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow : intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution : intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement : intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.
Journal Article
Correction: Surveying the spatial distribution of feral sorghum (Sorghum bicolor L.) and its sympatry with johnsongrass (S. halepense) in South Texas
by
Littlejohn, Matthew
,
Ohadi, Sara
,
Mesgaran, Mohsen
in
Sorghum
,
Spatial distribution
,
Surveying
2018
[This corrects the article DOI: 10.1371/journal.pone.0195511.].
Journal Article
Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback
2019
Ecological speciation can sometimes rapidly generate reproductively isolated populations coexisting in sympatry, but the origin of genetic variation permitting this is rarely known. We previously explored the genomics of very recent ecological speciation into lake and stream ecotypes in stickleback from Lake Constance. Here, we reconstruct the origin of alleles underlying ecological speciation by combining demographic modelling on genome-wide single nucleotide polymorphisms, phenotypic data and mitochondrial sequence data in the wider European biogeographical context. We find that parallel differentiation between lake and stream ecotypes across replicate lake-stream ecotones resulted from recent secondary contact and admixture between old East and West European lineages. Unexpectedly, West European alleles that introgressed across the hybrid zone at the western end of the lake, were recruited to genomic islands of differentiation between ecotypes at the eastern end of the lake. Our results highlight an overlooked outcome of secondary contact: ecological speciation facilitated by admixture variation.
Ecological speciation can proceed rapidly, but the origin of genetic variation facilitating it has remained elusive. Here, the authors show that secondary contact and introgression between deeply diverged lineages of stickleback fish facilitated rapid ecological speciation into lake and stream ecotypes in Lake Constance.
Journal Article
Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties
by
Rojas-Barrera, Idalia C.
,
Rieseberg, Loren H.
,
Wegier, Ana
in
Biological evolution
,
Biological Sciences
,
Corn
2019
Mexico is recognized as the center of origin and domestication of maize. Introduction of modern maize varieties (MVs) into Mexico raised concerns regarding the possible effects of gene flow from MVs into maize landraces (LRs) and their wild relatives (WRs), teosintes. However, after more than 60 y from the release of the first MVs, the impact of the sympatry with LRs and their WRs has not been explored with genetic data. In this work, we assessed changes in the genomes of 7 maize LRs and 2 WR subspecies from collections spanning over 70 y. We compared the genotypes obtained by genotyping by sequencing (GBS) for LRs and WRs before and after the adoption of MVs, and observed introgression from sympatric MVs into LRs and into the WR Zea mays ssp. mexicana sampled after the year 2000. We also found a decrease in the paired divergence index (FST) between MV-LR and MV-WR over the same time frame. Moreover, we determined that LR genetic diversity increased after 2000, probably as a result of gene flow from MVs introduced in the 1990s. Our findings allowed us to identify ongoing changes in the domesticated and wild maize genetic pools, and concur with previous works that have evaluated short-term gene flow from MVs into LRs in other crops. Our approach represents a useful tool for tracking evolutionary change in wild and domesticated genetic resources, as well as for developing strategies for their conservation.
Journal Article
The bioelements, the elementome, and the biogeochemical niche
by
Fernández-Martínez, Marcos
,
Vicca, Sara
,
Ciais, Philippe
in
Biodiversity
,
bioelements
,
biogeochemical niche
2019
Every living creature on Earth is made of atoms of the various bioelements that are harnessed in the construction of molecules, tissues, organisms, and communities, as we know them. Organisms need these bioelements in specific quantities and proportions to survive and grow. Distinct species have different functions and life strategies, and have therefore developed distinct structures and adopted a certain combination of metabolic and physiological processes. Each species is thus also expected to have different requirements for each bioelement. We therefore propose that a “biogeochemical niche” can be associated with the classical ecological niche of each species. We show from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements. The differences in elementome among species are a function of taxonomy and phylogenetic distance, sympatry (the bioelemental compositions should differ more among coexisting than among non-coexisting species to avoid competitive pressure), and homeostasis with a continuum between high homeostasis/low plasticity and low homeostasis/high plasticity. This proposed biogeochemical niche hypothesis has the advantage relative to other associated theoretical niche hypotheses that it can be easily characterized by actual quantification of a measurable trait: the elementome of a given organism or a community, being potentially applicable across taxa and habitats. The changes in bioelemental availability can determine genotypic selection and therefore have a feedback on ecosystem function and organization, and, at the end, become another driving factor of the evolution of life and the environment.
Journal Article
The Spectre of Too Many Species
by
Leaché, Adam D.
,
Yang, Ziheng
,
Zhu, Tianqi
in
Allopatric populations
,
allopatry
,
Bayes Theorem
2019
Recent simulation studies examining the performance of Bayesian species delimitation as implemented in the BPP program have suggested that BPP may detect population splits but not species divergences and that it tends to over-split when data of many loci are analyzed. Here, we confirm these results and provide the mathematical justifications. We point out that the distinction between population and species splits made in the protracted speciation model (PSM) has no influence on the generation of gene trees and sequence data, which explains why no method can use such data to distinguish between population splits and speciation. We suggest that the PSM is unrealistic as its mechanism for assigning species status assumes instantaneous speciation, contradicting prevailing taxonomic practice. We confirm the suggestion, based on simulation, that in the case of speciation with gene flow, Bayesian model selection as implemented in BPP tends to detect population splits when the amount of data (the number of loci) increases. We discuss the use of a recently proposed empirical genealogical divergence index (gdi) for species delimitation and illustrate that parameter estimates produced by a full likelihood analysis as implemented in BPP provide much more reliable inference under the gdi than the approximate method PHRAPL. We distinguish between Bayesian model selection and parameter estimation and suggest that the model selection approach is useful for identifying sympatric cryptic species, while the parameter estimation approach may be used to implement empirical criteria for determining species status among allopatric populations.
Journal Article
Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution
by
Cavender-Bares, Jeannine
in
Adaptation, Physiological
,
adaptive differentiation
,
adaptive radiation
2019
Ecologists and evolutionary biologists are concerned with explaining the diversity and composition of the natural world and are aware of the inextricable linkages between ecological and evolutionary processes that maintain the Earth’s life support systems. Yet examination of these linkages remains challenging due to the contrasting nature of focal systems and research approaches. Model clades provide a critical means to integrate ecology and evolution, as illustrated by the oaks (genus Quercus), an important model clade, given their ecological dominance, remarkable diversity, and growing phylogenetic, genomic, and ecological data resources. Studies of the clade reveal that their history of sympatric parallel adaptive radiation continues to influence community assembly today, highlighting questions on the nature and extent of coexistence mechanisms. Flexible phenology and hydraulic traits, despite evolutionary stasis, may have enabled adaptation to a wide range of environments within and across species, contributing to their high abundance and diversity. The oaks offer fundamental insights at the intersection of ecology and evolution on the role of diversification in community assembly processes, on the importance of flexibility in key functional traits in adapting to new environments, on factors contributing to persistence of long-lived organisms, and on evolutionary legacies that influence ecosystem function.
Journal Article