Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
369 result(s) for "Syndecan-1 - metabolism"
Sort by:
Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways
Background Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC. Methods We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC ( n  = 13) and non-IBC ( n  = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey’s multiple comparison tests. Results Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44 (+) CD24 (-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling. Conclusions Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC.
Exosomal miR-9-5p secreted by bone marrow–derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1
Mesenchymal stem cells (MSCs) have been demonstrated to serve as targets for the treatment of osteoarthritis (OA) and exosomes derived from MSCs also display chondroprotective effects. This study aims to investigate the regulatory role of exosomal microRNA-9-5p (miR-9-5p) secreted by bone marrow–derived MSCs (BM-MSCs) on OA in a rat model induced by anterior cruciate ligament/medial collateral ligament transection. Luciferase reporter assay was conducted to verify the putative miR-9-5p binding sites to 3′UTR of syndecan-1 (SDC1). Additionally, an intra-articular injection of miR-9-5p carried by BM-MSC–derived exosomes or liposomes into rats with OA-like damage was performed to ascertain the role of exosomal miR-9-5p and a gain-of-function study of SDC1 was carried out to explore the potential mechanism in relation to SDC1. Subsequently, the expression of SDC1 was determined and the levels of inflammatory factors (IL-1, IL-6, TNF-α and CRP) and oxidative stress injury indicators (NO, MDA, iNOS, COX2 and SOD), the contents of AKP as well as the levels of OA-related factors (MMP-13, COMP and OCN) were measured. Injection of miR-9-5p-contained exosomes resulted in an alleviation of inflammation and OA-like damage, which was evidenced by downregulated levels of inflammatory factors, reduced oxidative stress injury and decreased OCN, MMP-13, COMP and AKP levels. As a target gene of miR-9-5p, the upregulation of SDC1 led to aggravation of inflammation and OA-like damage, which is opposite to exosomal miR-9-5p. To conclude, these findings suggest the anti-inflammatory and chondroprotective effects of BM-MSC–derived exosomal miR-9-5p on OA via regulation of SDC1.
Syndecan-1 facilitates breast cancer metastasis to the brain
PurposeAlthough survival rates for patients with localized breast cancer have increased, patients with metastatic breast cancer still have poor prognosis. Understanding key factors involved in promoting breast cancer metastasis is imperative for better treatments. In this study, we investigated the role of syndecan-1 (Sdc1) in breast cancer metastasis.MethodsTo assess the role of Sdc1 in breast cancer metastasis, we silenced Sdc1 expression in the triple-negative breast cancer human MDA-MB-231 cell line and overexpressed it in the mouse mammary carcinoma 4T1 cell line. Intracardiac injections were performed in an experimental mouse metastasis model using both cell lines. In vitro transwell blood–brain barrier (BBB) and brain section adhesion assays were utilized to specifically investigate how Sdc1 facilitates brain metastasis. A cytokine array was performed to evaluate differences in the breast cancer cell secretome when Sdc1 is silenced.ResultsSilencing expression of Sdc1 in breast cancer cells significantly reduced metastasis to the brain. Conversely, overexpression of Sdc1 increased metastasis to the brain. We found that silencing of Sdc1 expression had no effect on attachment of breast cancer cells to brain endothelial cells or astrocytes, but migration across the BBB was reduced as well as adhesion to the perivascular regions of the brain. Loss of Sdc1 also led to changes in breast cancer cell-secreted cytokines/chemokines, which may influence the BBB.ConclusionsTaken together, our study demonstrates a role for Sdc1 in promoting breast cancer metastasis to the brain. These findings suggest that Sdc1 supports breast cancer cell migration across the BBB through regulation of cytokines, which may modulate the BBB. Further elucidating this mechanism will allow for the development of therapeutic strategies to combat brain metastasis.
The Effect of Coronary Artery Bypass Surgery on Interleukin-18 Concentration and Biomarkers Related to Vascular Endothelial Glycocalyx Degradation
Surgical myocardial revascularization, regardless of the technique used, causes ischemia–reperfusion injury (IRI) in the myocardium mediated by inflammation and degradation of the endothelial glycocalyx (EG). We investigated the difference between on-pump and off-pump techniques in terms of the concentration of proinflammatory interleukin (IL)-18 and the EG degradation products syndecan-1 and hyaluronic acid measured by ELISA in the peripheral and cardiac circulation during open heart surgery and in the early postoperative period. The concentration of IL-18, C-reactive protein (CRP), and cardiac troponin T (cTnT) and the leukocyte count increased statistically significantly in revascularized patients at 24 and 72 h after revascularization compared to the beginning of the procedure and was always statistically significantly higher in on-pump patients. Syndecan-1 and hyaluronic acid only increased in on-pump patients 24 and 72 h after revascularization. IL-18 correlated positively with syndecan-1 and CRP only in the pump setting and with the number of leukocytes in both revascularization regimens 24 and 72 h after the surgery. cTnT and hyaluronic acid did not correlate with IL-18. Our results suggest that IL-18 plays an important role in the early inflammatory response in patients during open heart surgery and in the early postoperative period, leading to additional damage to the EG, while it is probably not responsible for myocardial necrosis. It could serve as a biomarker to identify high-risk patients and as a therapeutic target to reduce inflammation and EG degradation. In addition, measurement of IL-18 could help improve the treatment, recovery, and outcomes of patients after heart surgery.
Circulating glycocalyx shedding products as biomarkers for evaluating prognosis of patients with out-of-hospital cardiac arrest after return of spontaneous circulation
The endothelial glycocalyx is damaged in postcardiac arrest syndrome (PCAS), but the prognostic value is unknown. We aimed to observe the expression and prognostic value of glycocalyx shedding products, including syndecan-1 (SDC-1), hyaluronan (HA), and heparan sulfate (HS) in PCAS. Data on clinical and 28-day outcomes of seventy-one consecutive patients with out-of-hospital cardiac arrest (OHCA) after the return of spontaneous circulation (ROSC) were collected. SDC-1, HA, and HS were measured on days 0, 1, and 3 after ROSC. Thirty healthy individuals were controls. Glycocalyx shedding was observed in human umbilical vein endothelial cells (HUVECs) stimulated during hypoxia and reoxygenation in vitro. Within 4 h of ROSC, SDC-1 and HA levels, significantly increased. In the 28-day non-survivors, HA levels showed a gradual upward trend, SDC-1 remained at a high level, and HS levels first increased, then decreased. Kaplan–Meier curves and binary logistic regression analysis showed the prognostic value of SDC-1 levels on days 0, 1, and 3, HA levels on days 1 and 3, and HS levels on day 1. Only HS levels on day 1 showed a prognostic value for 28-day neurological outcomes. SDC-1 and HA levels were positively correlated with the no-flow time. In vitro, HUVECs showed shedding of SDC-1 and HS during a prolonged duration of hypoxia. After ROSC, SDC-1, HA, and HS levels may predict the 28-day survival after PCAS, and HS levels are associated with functional outcomes.
Binding of Trichinella spiralis C-type lectin with syndecan-1 on intestinal epithelial cells mediates larval invasion of intestinal epithelium
C-type lectin (CTL) is a protein that binds to saccharides and plays an important role in parasite adhesion, host cell invasion and immune evasion. Previous studies showed that recombinant T. spiralis C-type lectin (rTsCTL) promotes larval invasion of intestinal epithelium cells (IEC), whereas anti-rTsCTL antibodies inhibits larval invasion. Syndecan-1 (SDC-1) is a member of the heparan sulfate proteoglycan family which is mainly expressed on the surface of IEC and in extracellular matrices where they interact with a plethora of ligands. SDC-1 has a principal role in maintaining cell morphogenesis, establishing cell–cell adhesions, and regulating the gut mucosal barrier. The aim of this study was to investigate whether rTsCTL binds to SDC-1 on IEC, and the binding of rTsCTL with SDC-1 promotes larval invasion and its mechanism. IFA results show that rTsCTL and SDC-1 co-localized on Caco-2 cell membrane. GST pull-down and Co-IP verified the direct interaction between rTsCTL and SDC-1 on Caco-2 cells. qPCR and Western blotting revealed that rTsCTL binding to SDC-1 increased the expression of SDC-1 and claudin-2, and reduced the expression of occludin and claudin-1 in Caco-2 cells incubated with rTsCTL via the STAT3 pathway. β-Xyloside (a syndecan-1 synthesis inhibitor) and Stattic (a STAT3 inhibitor) significantly inhibited rTsCTL binding to syndecan-1 in Caco-2 cells and activation of the STAT3 pathway, abrogated the effects of rTsCTL on the expression of gut tight junctions, and impeded larval invasion. The results demonstrate that binding of rTsCTL to SDC-1 on Caco-2 cells activated the STAT3 pathway, decreased gut tight junction expression, damaged the integrity of the gut epithelial barrier, and mediated T. spiralis invasion of the gut mucosa. TsCTL might be regarded as a candidate vaccine target against T. spiralis invasion and infection.
Syndecan-1 (CD138) Modulates Triple-Negative Breast Cancer Stem Cell Properties via Regulation of LRP-6 and IL-6-Mediated STAT3 Signaling
Syndecan-1 (CD138), a heparan sulfate proteoglycan, acts as a coreceptor for growth factors and chemokines and is a molecular marker associated with epithelial-mesenchymal transition during development and carcinogenesis. Resistance of Syndecan-1-deficient mice to experimentally-induced tumorigenesis has been linked to altered Wnt-responsive precursor cell pools, suggesting a potential role of Syndecan-1 in breast cancer cell stem function. However, the precise molecular mechanism is still elusive. Here, we decipher the functional impact of Syndecan-1 knockdown using RNA interference on the breast cancer stem cell phenotype of human triple-negative MDA-MB-231 and hormone receptor-positive MCF-7 cells in vitro employing an analytical flow cytometric approach. Successful Syndecan-1 siRNA knockdown was confirmed by flow cytometry. Side population measurement by Hoechst dye exclusion and Aldehyde dehydrogenase-1 activity revealed that Syndecan-1 knockdown in MDA-MB-231 cells significantly reduced putative cancer stem cell pools by 60% and 27%, respectively, compared to controls. In MCF-7 cells, Syndecan-1 depletion reduced the side population by 40% and Aldehyde dehydrogenase-1 by 50%, repectively. In MDA-MB-231 cells, the CD44(+)CD24(-/low) phenotype decreased significantly by 6% upon siRNA-mediated Syndecan-1 depletion. Intriguingly, IL-6, its receptor sIL-6R, and the chemokine CCL20, implicated in regulating stemness-associated pathways, were downregulated by >40% in Syndecan-1-silenced MDA-MB-231 cells, which showed a dysregulated response to IL-6-induced shifts in E-cadherin and vimentin expression. Furthermore, activation of STAT-3 and NFkB transcription factors and expression of a coreceptor for Wnt signaling, LRP-6, were reduced by >45% in Syndecan-1-depleted cells compared to controls. At the functional level, Syndecan-1 siRNA reduced the formation of spheres and cysts in MCF-7 cells grown in suspension culture. Our study demonstrates the viability of flow cytometric approaches in analyzing cancer stem cell function. As Syndecan-1 modulates the cancer stem cell phenotype via regulation of the Wnt and IL-6/STAT3 signaling pathways, it emerges as a promising novel target for therapeutic approaches.
Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer
Background: Syndecan-1 (Sdc-1) shedding induced by matrix metalloproteinase-7 (MMP-7) and additional proteases has an important role in cancer development. However, the impact of Sdc-1 shedding on chemotherapeutic resistance has not been reported. Methods: We examined Sdc-1 shedding in colorectal cancer by enzyme-linked immunosorbent assay (ELISA), Dot blot, reverse transcription-PCR (RT-PCR), immunohistochemistry and so on, its impact on chemotherapeutic sensitivity by collagen gel droplet embedded culture-drug sensitivity test (CD-DST) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), and potential mechanisms of action by Dot blot, western blot and immunofluorescence. Results: Sdc-1 shedding was increased in colorectal cancer patients, Sdc-1 serum levels in postoperative patients were lower than in preoperative patients, but still higher than those observed in healthy adults. Patients with high preoperative Sdc-1 serum levels were less responsive to 5-Fluorouracil, Oxaliplatin, Irintecan, Cisplatin or Paclitaxel chemotherapy. Moreover, the disease-free survival of patients with high preoperative Sdc-1 serum levels was significantly poorer. The possible mechanism of chemotherapy resistance in colorectal cancer can be attributed to Sdc-1 shedding, which enhances EGFR phosphorylation and downstream signalling. Conclusions: Shed Sdc-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer, and Sdc-1 serum levels could be a new prognostic marker in colorectal cancer.
The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress
The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell. Our findings also suggest the GM1-labelled membrane rafts were associated with caveolae and glypican-1/heparan sulfate and varied in concert with these components. We conclude that remodeling of the glycocalyx to long-term shear stress is associated with the changes in membrane rafts and the actin cytoskeleton. This study reveals a space- and time- dependent reorganization of the glycocalyx that may underlie alterations in mechanotransduction mechanisms over the time course of shear exposure.
IgD attenuates the IgM-induced anergy response in transitional and mature B cells
Self-tolerance by clonal anergy of B cells is marked by an increase in IgD and decrease in IgM antigen receptor surface expression, yet the function of IgD on anergic cells is obscure. Here we define the RNA landscape of the in vivo anergy response, comprising 220 induced sequences including a core set of 97. Failure to co-express IgD with IgM decreases overall expression of receptors for self-antigen, but paradoxically increases the core anergy response, exemplified by increased Sdc1 encoding the cell surface marker syndecan-1. IgD expressed on its own is nevertheless competent to induce calcium signalling and the core anergy mRNA response. Syndecan-1 induction correlates with reduction of surface IgM and is exaggerated without surface IgD in many transitional and mature B cells. These results show that IgD attenuates the response to self-antigen in anergic cells and promotes their accumulation. In this way, IgD minimizes tolerance-induced holes in the pre-immune antibody repertoire. Self-reactive B cells that are anergic express mainly IgD, yet the function of IgD is not clear. Here the authors analyse primary B cells from mice to show that IgD signalling attenuates self-antigen induced gene expression and promotes survival of anergic B cells that might go on to reactivate to foreign antigens and mutate away from self-reactivity.