Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
349
result(s) for
"Synovial Fluid - drug effects"
Sort by:
Effects of a feed supplement, containing undenatured type II collagen (UC II®) and Boswellia Serrata, in the management of mild/moderate mobility disorders in dogs: A randomized, double-blind, placebo controlled, cross-over study
by
Fracassi, Laura
,
Fanizzi, Francesco Paolo
,
Ribecco, Nunziata
in
Animal Feed - analysis
,
Animals
,
Biology and Life Sciences
2024
This study was designed as a randomized, placebo-controlled, double-blinded, cross-over trial performed to investigate the effects of a dietary supplement containing undenatured type II collagen (UCII ® ) and Boswellia Serrata on mobility, pain and joint metabolism in mild moderate osteoarthritis (OA) in dogs. A total of 60 dogs with mobility problems were evaluated and enrolled in the study. Seventeen of these dogs with mild/moderate OA were randomized to receive the product A (UCII ® + Boswellia Serrata supplement–UCII ® -BW) or product B (Placebo -PL), 1 chew per day for 8 weeks by oral route, and repeated in a crossover design after 4 weeks of washout period. All the subjects had veterinary evaluations during the trial and owners were requested to fill out a questionnaire on mobility impairment using the Liverpool Osteoarthritis in dogs scale (L.O.A.D.) at each time of the study. Objective tools were used to assess mobility, activity, and pain. Metabolomic analysis was performed on synovial fluid of most affected joint at the beginning and the end of the study. The results proved that UCII ® + Boswellia serrata supplemented group over a period of eight weeks results in an improvement of mobility impairment, already at 4 weeks of administration, according to the owner´s evaluation. In contrast, its absence increased the risk of OA crisis and decreased the pain threshold on the most affected joint. Furthermore, the synovial fluid metabolic profile showed moderate differences between the beginning and the end of the supplementation period, with a particular influence associated to the time of UCII ® -BW administration.
Journal Article
Effect of vitamin E on oxidative stress level in blood, synovial fluid, and synovial tissue in severe knee osteoarthritis: a randomized controlled study
by
Callaghan, John J.
,
Suantawee, Tanyawan
,
Tanavalee, Aree
in
Aged
,
Anti-inflammation
,
Antioxidant
2017
Background
This study was performed to evaluate the antioxidative and anti-inflammatory effects of vitamin E on oxidative stress in the plasma, synovial fluid, and synovial tissue of patients with knee osteoarthritis.
Methods
Seventy-two patients with late-stage knee osteoarthritis scheduled for total knee arthroplasty were randomized to take oral placebo (Group A) or 400 IU of vitamin E (Group B) once a day for 2 months before undergoing surgery. The blood levels of endpoints indicating oxidative stress or antioxidant capacity, Knee Society Score (KSS), Western Ontario and McMaster Universities Osteoarthritis Index score (WOMAC), and adverse effects were compared before and after the intervention between the two groups. At surgery, these redox endpoints and histological findings were compared between the synovial fluid and synovial tissue.
Results
In blood samples, the pre-intervention of oxidative stress and antioxidative capacity were not different between Group A and Group B. In post-intervention blood samples, the Malondialdehyde (Group A 1.34 ± 0.10, Group B 1.00 ± 0.09,
p
< 0.02), Alpha tocopherol (Group A 15.92 ± 1.08, Group B 24.65 ± 1.47,
p
< 0.01) and Trolox equivalent antioxidant capacity (Group A 4.22 ± 0.10, Group B 5.04 ± 0.10, 0 < 0.01) were significantly different between Group A and Group B. In synovial fluid samples, the Malondialdehyde (Group A 1.42 ± 0.12, Group B 1.06 ± 1.08, p 0.01), Alphatocopherol (Group A 4.51, Group B 7.03,
p
< 0.01), Trolox equivalent antioxidant capacity (Group A, 1.89 ± 0.06, Group B 2.19 ± 0.10) were significantly different between Group A and Group B. The pre-intervention WOMAC score and KSS score were not different between Group A and Group B. The post-intervention WOMAC score was significantly improved in all categories in Group B (Pain: Group A 27.26 ± 0.89, Group B 19.19 ± 1.43,
p
< 0.01; Stiffness: Group A 8.23 ± 0.79, Group B 5.45 ± 0.73, p 0.01; Function: Group A 94.77 ± 4.22, Group B 72.74 ± 6.55,
p
< 0.01). The post-intervention KSS score was significantly improved in all categories in Group B (Clinical: Group A 25.31 ± 14.33, Group B 33.52 ± 16.96,
p
< 0.01; Functional: Group A 41.43 ± 16.11, Group B 51.61 ± 19.60, p 0.02). Significantly fewer synovial tissue cells were stained with nitrotyrosine and hematoxylin–eosin in Group B than in Group A. There were no differences in adverse effects or surgical complications between the groups.
Conclusion
Vitamin E is an effective antioxidant that can improve clinical symptoms and reduce oxidative stress conditions in patients with late-stage knee osteoarthritis.
Trial registration
This research project had been approved for registration at Thai Clinical Trials Registry (TCTR) since 2016–08-28 11:26:32 (Retrospective registered). The TCTR identification number is
TCTR20160828001
.
Journal Article
Single cell immunoprofile of synovial fluid in rheumatoid arthritis with TNF/JAK inhibitor treatment
2025
Numerous patients with rheumatoid arthritis (RA) manifest severe syndromes, including elevated synovial fluid volumes (SF) with abundant immune cells, which can be controlled by TNF/JAK inhibitors. Here, we apply single-cell RNA sequencing (scRNA-seq) and subsequent validations in SF from RA patients. These analyses of synovial tissue show reduced density of SF-derived pathogenic cells (e.g.,
SPP1
+
macrophages and
CXCL13
+
CD4
+
T cells), altered gene expression (e.g.,
SPP1
and
STAT1
), molecular pathway changes (e.g., JAK/STAT), and cell-cell communications in drug-specific manners in samples from patients pre-/post-treated with adalimumab/tofacitinib. Particularly,
SPP1
+
macrophages exhibit pronounced communication with
CXCL13
+
CD4
+
T cells, which are abolished after treatment and correlate with treatment efficacy. These pathogenic cell types alone or in combination can augment inflammation of fibroblast-like synoviocytes in vitro, while conditional Spp1 knocking-out reduces RA-related cytokine expression in collagen-induced arthritis mice models. Our study shows the functional role of SF-derived pathogenic cells in progression and drug-specific treatment outcomes in RA.
Inflammatory immune cells are found in the synovial fluid of patients with rheumatoid arthritis (RA). Here the authors use scRNA sequencing of synovial fluid cells from RA patients before and after treatment with adalimumab/tofacitinib and find changes in inflammatory SPP1+ macrophages and explore the function of these cells in mouse models.
Journal Article
Neutrophil Extracellular Trap Formation Is Associated with IL-1β and Autophagy-Related Signaling in Gout
by
Apostolidou, Eirini
,
Chrysanthopoulou, Akrivi
,
Skendros, Panagiotis
in
1-Phosphatidylinositol 3-kinase
,
Acute Disease
,
Adults
2011
Gout is a prevalent inflammatory arthritis affecting 1-2% of adults characterized by activation of innate immune cells by monosodium urate (MSU) crystals resulting in the secretion of interleukin-1β (IL-1β). Since neutrophils play a major role in gout we sought to determine whether their activation may involve the formation of proinflammatory neutrophil extracellular traps (NETs) in relation to autophagy and IL-1β.
Synovial fluid neutrophils from six patients with gout crisis and peripheral blood neutrophils from six patients with acute gout and six control subjects were isolated. MSU crystals, as well as synovial fluid or serum obtained from patients with acute gout, were used for the treatment of control neutrophils. NET formation was assessed using immunofluorescence microscopy. MSU crystals or synovial fluid or serum from patients induced NET formation in control neutrophils. Importantly, NET production was observed in neutrophils isolated from synovial fluid or peripheral blood from patients with acute gout. NETs contained the alarmin high mobility group box 1 (HMGB1) supporting their pro-inflammatory potential. Inhibition of phosphatidylinositol 3-kinase signaling or phagolysosomal fusion prevented NET formation, implicating autophagy in this process. NET formation was driven at least in part by IL-1β as demonstrated by experiments involving IL-1β and its inhibitor anakinra.
These findings document for the first time that activation of neutrophils in gout is associated with the formation of proinflammatory NETs and links this process to both autophagy and IL-1β. Modulation of the autophagic machinery may represent an additional therapeutic study in crystalline arthritides.
Journal Article
Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines
2014
Neutrophil extracellular traps (NETs) are released by neutrophils in response to infection and have also been observed in sterile inflammation. Here, monosodium urate crystals, found in gout, are shown to induce NET formation and aggregation. These aggregated NETs proteolytically degrade cytokines and chemokines and reduce inflammatory responses. NETosis-deficient mice develop chronic inflammatory disease that can be attenuated after the transfer of aggregated NETs, suggesting that the formation of aggregated NETs may serve to limit inflammation.
Gout is characterized by an acute inflammatory reaction and the accumulation of neutrophils in response to monosodium urate (MSU) crystals. Inflammation resolves spontaneously within a few days, although MSU crystals can still be detected in the synovial fluid and affected tissues. Here we report that neutrophils recruited to sites of inflammation undergo oxidative burst and form neutrophil extracellular traps (NETs). Under high neutrophil densities, these NETs aggregate and degrade cytokines and chemokines via serine proteases. Tophi, the pathognomonic structures of chronic gout, share characteristics with aggregated NETs, and MSU crystals can induce NETosis and aggregation of NETs. In individuals with impaired NETosis, MSU crystals induce uncontrolled production of inflammatory mediators from neutrophils and persistent inflammation. Furthermore, in models of neutrophilic inflammation, NETosis-deficient mice develop exacerbated and chronic disease that can be reduced by adoptive transfer of aggregated NETs. These findings suggest that aggregated NETs promote the resolution of neutrophilic inflammation by degrading cytokines and chemokines and disrupting neutrophil recruitment and activation.
Journal Article
Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts
2020
Cannabidiol (CBD) is a non-intoxicating phytocannabinoid from
cannabis sativa
that has demonstrated anti-inflammatory effects in several inflammatory conditions including arthritis. However, CBD binds to several receptors and enzymes and, therefore, its mode of action remains elusive. In this study, we show that CBD increases intracellular calcium levels, reduces cell viability and IL-6/IL-8/MMP-3 production of rheumatoid arthritis synovial fibroblasts (RASF). These effects were pronounced under inflammatory conditions by activating transient receptor potential ankyrin (TRPA1), and by opening of the mitochondrial permeability transition pore. Changes in intracellular calcium and cell viability were determined by using the fluorescent dyes Cal-520/PoPo3 together with cell titer blue and the luminescent dye RealTime-glo. Cell-based impedance measurements were conducted with the XCELLigence system and TRPA1 protein was detected by flow cytometry. Cytokine production was evaluated by ELISA. CBD reduced cell viability, proliferation, and IL-6/IL-8 production of RASF. Moreover, CBD increased intracellular calcium and uptake of the cationic viability dye PoPo3 in RASF, which was enhanced by pre-treatment with TNF. Concomitant incubation of CBD with the TRPA1 antagonist A967079 but not the TRPV1 antagonist capsazepine reduced the effects of CBD on calcium and PoPo3 uptake. In addition, an inhibitor of the mitochondrial permeability transition pore, cyclosporin A, also blocked the effects of CBD on cell viability and IL-8 production. PoPo3 uptake was inhibited by the voltage-dependent anion-selective channel inhibitor DIDS and Decynium-22, an inhibitor for all organic cation transporter isoforms. CBD increases intracellular calcium levels, reduces cell viability, and IL-6/IL-8/MMP-3 production of RASF by activating TRPA1 and mitochondrial targets. This effect was enhanced by pre-treatment with TNF suggesting that CBD preferentially targets activated, pro-inflammatory RASF. Thus, CBD possesses anti-arthritic activity and might ameliorate arthritis via targeting synovial fibroblasts under inflammatory conditions.
Journal Article
Transforming clinical trials in rheumatology: towards patient-centric precision medicine
by
Choy, Ernest H
,
Buch, Maya H
,
Pitzalis Costantino
in
Arthritis
,
Clinical trials
,
Inflammation
2020
Despite the success of targeted therapies in the treatment of inflammatory arthritides, the lack of predictive biomarkers drives a ‘trial and error’ approach to treatment allocation, leading to variable and/or unsatisfactory responses. In-depth characterization of the synovial tissue in rheumatoid arthritis, as well as psoriatic arthritis and spondyloarthritis, is bringing new insights into the diverse cellular and molecular features of these diseases and their potential links with different clinical and treatment-response phenotypes. Such progress raises the tantalizing prospect of improving response rates by matching the use of specific agents to the cognate target pathways that might drive particular disease subtypes in specific patient groups. Innovative patient-centric, molecular pathology-driven clinical trial approaches are needed to achieve this goal. Whilst progress is clearly being made, it is important to emphasize that this field is still in its infancy and there are a number of potential barriers to realizing the premise of patient-centric clinical trials.In this article, the authors discuss how the use of innovative clinical trial designs could facilitate the efficient evaluation of new and existing drugs in specific subgroups of patients, in order to optimize therapy allocation and address unmet clinical needs.
Journal Article
The Effect of Vascular Endothelial Growth Factor on Osteoclastogenesis in Rheumatoid Arthritis
by
Kim, Hae-Rim
,
Kim, Bo-Mi
,
Lee, Sang-Heon
in
Acid phosphatase
,
Acid phosphatase (tartrate-resistant)
,
Acid resistance
2015
Vascular endothelial growth factor (VEGF) has angiogenic, inflammatory, and bone-destructive roles in rheumatoid arthritis (RA). We aimed to determine the unique role of VEGF in osteoclastogenesis in RA. VEGF-induced receptor activator of nuclear factor ҡB ligand (RANKL) expression was determined in RA synovial fibroblasts by real-time PCR, luciferase assays, and ELISA. Osteoclastogenesis in peripheral blood monocytes cultured with VEGF was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. Synovial fluid RANKL was correlated with VEGF concentration in the RA patients. VEGF stimulated the expression of RANKL in RA synovial fibroblasts. The RANKL promoter activity was upregulated by VEGF in the synovial fibroblasts transfected with RANKL-reporter plasmids. The VEGF-induced RANKL expression was decreased by the inhibition of both VEGF receptors (VEGFR) 1 and 2, Src, protein kinase C (PKC) and p38 MAPK. VEGF induced osteoclast differentiation from monocytes in the absence of RANKL and this was decreased by the inhibition of VEGFR1 and 2, Src, PKC and p38 MAPK. On coculturing with VEGF-prestimulated RA synovial fibroblasts, the monocytes differentiated into osteoclasts, and the osteoclastogenesis decreased by inhibition of Src and PKC pathways. VEGF plays dual roles on osteoclastogenesis in RA: direct induction of osteoclastogenesis from the precursors and stimulation of RANKL production in synovial fibroblasts, which is mediated by Src and PKC pathways. The axis of VEGF and RANKL could be a potential therapeutic target for RA-associated bone destruction.
Journal Article
Takinib Inhibits Inflammation in Human Rheumatoid Arthritis Synovial Fibroblasts by Targeting the Janus Kinase-Signal Transducer and Activator of Transcription 3 (JAK/STAT3) Pathway
by
Siegel, Ruby J.
,
Chourasia, Mukesh
,
Ahmed, Salahuddin
in
Arthritis, Rheumatoid - drug therapy
,
Arthritis, Rheumatoid - genetics
,
Arthritis, Rheumatoid - pathology
2021
TGF β-activated kinase 1 (TAK1) is an important participant in inflammatory pathogenesis for diseases such as rheumatoid arthritis (RA) and gouty arthritis. The central position it occupies between the mitogen activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways makes it an attractive therapeutic target. As this field has developed in recent years, several novel inhibitors have been presented as having specific activity that reduces the TAK1 function either covalently as in the case of 5Z-7-oxozeanol (5Z7O) or reversibly (NG-25). However, the mechanism through which takinib elicits its anti-inflammatory activity remains elusive. While this inhibitor shows great promise, a thorough analysis of its inhibitor function and its potential off-target effects is necessary before addressing its clinical potential or its use in inflammatory conditions. An analysis through Western blot showed an unexpected increase in IL-1β-induced TAK1 phosphorylation—a prerequisite for and indicator of its functional potential—by takinib while simultaneously demonstrating the inhibition of the JAK/STAT pathway in human rheumatoid arthritis synovial fibroblasts (RASFs) in vitro. In THP-1 monocyte-derived macrophages, takinib again led to the lipopolysaccharide-induced phosphorylation of TAK1 without a marked inhibition of the TAK1 downstream effectors, namely, of c-Jun N-terminal kinase (JNK), phospho-c-Jun, NF-κB phospho-p65 or phospho-IκBα. Taken together, these findings indicate that takinib inhibits inflammation in these cells by targeting multiple signaling pathways, most notably the JAK/STAT pathway in human RASFs.
Journal Article
Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of p38 MAPK Signaling Pathway
2018
It has been suggested that the activation of the p38 mitogen activated protein kinases (MAPKs) signaling pathway plays a significant role in the progression of OA by leading to the overexpression of proinflammatory cytokines, chemokines, and signaling enzymes in human osteoarthritis chondrocytes. However, most p38 MAPK inhibitors applied for OA have been thought to be limited due to their potential long-term toxicities. Geniposide (GE), an iridoid glycoside purified from the fruit of the herb, has been widely used in traditional medicine for the treatment of a variety of chronic inflammatory diseases. In this study, we evaluated the inhibition effect of geniposide on the inflammatory progression of the surgically induced osteoarthritis and whether the protective effect of geniposide on OA is related to the inhibition of the p38 MAPK signaling pathway. In vitro, geniposide attenuated the expression of inflammatory cytokines including interleukin-1 (IL-1), tumor necrosis factor (TNF-α), and nitric oxide (NO) production as well as matrix metalloproteinase- (MMP-) 13 in chondrocytes isolated from surgically induced rabbit osteoarthritis model. Additionally, geniposide markedly suppressed the expression of IL-1, TNF-α, NO, and MMP-13 in the synovial fluid from the rabbits with osteoarthritis. More importantly, our results clearly demonstrated that the inhibitory effect of geniposide on surgery-induced expression of inflammatory mediators in osteoarthritis was closely associated with the suppression of the p38 MAPK signaling pathways. Our study demonstrates that geniposide may have therapeutic potential to serve as an alternative agent for the p38 MAPK inhibition for the treatment of OA due to its inherent features of biological activities and low toxicity as a traditional Chinese medicine.
Journal Article