Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,340 result(s) for "Synthetic fabrics."
Sort by:
Supercritical carbon dioxide as a green media in textile dyeing: A review
This review highlights the great role of supercritical carbon dioxide fluid technology in textile dyeing processes. The unequivocal physical characteristics of supercritical carbon dioxide are presented and further researched to continue the development of high efficiency, compact dyeing to save energy and water in manufacturing processes. This review also focuses on the solubility of the dyes in scCO2 as well as the application of the technology to both synthetic and natural fabrics. Some factors relating to the economics of sustainable scCO2 technology are also outlined.
High Performance Technical Textiles
Created to be a comprehensive reference, this book includes the review of a wide range of technical textiles from household to space textiles. The contributors-noted experts in the field from all the continents-offer in-depth coverage on the fibre materials, manufacturing processes and techniques, applications, current developments, sustainability and future trends. The contributors include discussions on synthetic versus natural fibres, various textile manufacturing techniques, textile composites and finishing approaches that are involved in the manufacturing of textiles for a specific high performance application. Whilst the book provides the basic knowledge required for an understanding of technical textiles, it can serve as a springboard for inspiring new inventions in hi-tech fibres and textiles. This important book: Contains a unique approach that offers a comprehensive understanding of the manufacturing and applications of technical textiles; Includes a general overview to the fundamentals, current techniques, end use applications as well as the most recent advancements; Explores the current standards in the industry and the ongoing research in the field; Offers a comprehensive and single source reference on the topic.
An introduction to electrospinning and nanofibers
The research and development of nanofibers has gained much prominence in recent years due to the heightened awareness of its potential applications in the medical, engineering and defense fields. Among the most successful methods for producing nanofibers is the electrospinning process. In this timely book, the areas of electrospinning and nanofibers are covered for the first time in a single volume. The book can be broadly divided into two parts: the first comprises descriptions of the electrospinning process and modeling to obtain nanofibers while the second describes the characteristics and applications of nanofibers. The material is aimed at both newcomers and experienced researchers in the area.
Fiber sleeve impact on push-out bond strength of adjustable post system
This study investigated the influence of the fiber sleeve on push-out bond strength (PBS), both with and without aging in a mastication simulator. Sixty straight-rooted mandibular premolars were randomly divided into four groups (n = 15). Groups S and S.sub.MS included fiber sleeves and posts, while Groups P and P.sub.MS included posts only. Groups S.sub.MS and P.sub.MS underwent aging in a mastication simulator (50 N load, 240,000 cycles). Specimens were sectioned into 1 mm slices (coronal, middle, apical thirds), and PBS testing was performed using a universal testing machine. Failure modes were analyzed under 40× magnification. Statistical analysis used one-way ANOVA and Tukey tests ([alpha] = 0.05). Group S had the highest PBS, significantly surpassing Group P (P < 0.001). Aging significantly reduced PBS in sleeve groups (S vs. S.sub.MS,P = 0.029) Adhesive failure between dentin and cement was most common. The use of fiber sleeves significantly improved PBS; however, this enhancement diminished following aging procedures.
The Effect of the Physical and Chemical Properties of Synthetic Fabrics on the Release of Microplastics during Washing and Drying
Synthetic fibers released during washing are the primary source of microplastic pollution. Hence, research on reducing the release of microplastic fibers during washing has recently attracted considerable attention. As a result of previous studies, there is a difference in the amount of microplastic emission according to various types of fabrics. To mitigate the release of microplastics, the study of the reason for the difference in the amount of microplastics is needed. Therefore, this study investigated different synthetic fabrics that release microplastics and the physical properties of the fabrics that affect the release of fibers. Three types of fabrics with different chemical compositions were analyzed. The washing and drying processes were improved by focusing on the mechanical factors that affected microplastic release. Furthermore, based on the mass of the collected microplastic fibers, it was found that the chemical compositions of the fabric can affect the microplastics released during washing and drying. This evaluation of physical properties helped to identify the physical factors that affect microplastic release. These results may provide a basis for reducing microplastic fiber types, thereby minimizing unintended environmental pollution.
Comprehensive characterization of protective face coverings made from household fabrics
Face coverings constitute an important strategy for containing pandemics, such as COVID-19. Infection from airborne respiratory viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can occur in at least three modes; tiny and/or dried aerosols (typically 0.5 [mu]m) generated during coughing and sneezing, and macro drops transmitted via fomites. While there is a growing number of studies looking at the performance of household materials against some of these situations, to date, there has not been any systematic characterization of household materials against all three modes. A three-step methodology was developed and used to characterize the performance of 21 different household materials with various material compositions (e.g. cotton, polyester, polypropylene, cellulose and blends) using submicron sodium chloride aerosols, water droplets, and mucous mimicking macro droplets over an aerosol-droplet size range of ~ 20 nm to 0.6 cm. Except for one thousand-thread-count cotton, most single-layered materials had filtration efficiencies 80% of larger droplets, even at sneeze-velocities of up to 1700 cm/s. Three or four layers of the same material, or combination materials, would be required to stop macro droplets from permeating out or into the face covering. Such materials can also be boiled for reuse. Four layers of loosely knit or woven fabrics independent of the composition (e.g. cotton, polyester, nylon or blends) are likely to be effective source controls. One layer of tightly woven fabrics combined with multiple layers of loosely knit or woven fabrics in addition to being source controls can have sub-micron filtration efficiencies > 40% and may offer some protection to the wearer. However, the pressure drop across such fabrics can be high (> 100 Pa).
Comprehensive characterization of protective face coverings made from household fabrics
Face coverings constitute an important strategy for containing pandemics, such as COVID-19. Infection from airborne respiratory viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can occur in at least three modes; tiny and/or dried aerosols (typically 0.5 [mu]m) generated during coughing and sneezing, and macro drops transmitted via fomites. While there is a growing number of studies looking at the performance of household materials against some of these situations, to date, there has not been any systematic characterization of household materials against all three modes. A three-step methodology was developed and used to characterize the performance of 21 different household materials with various material compositions (e.g. cotton, polyester, polypropylene, cellulose and blends) using submicron sodium chloride aerosols, water droplets, and mucous mimicking macro droplets over an aerosol-droplet size range of ~ 20 nm to 0.6 cm. Except for one thousand-thread-count cotton, most single-layered materials had filtration efficiencies 80% of larger droplets, even at sneeze-velocities of up to 1700 cm/s. Three or four layers of the same material, or combination materials, would be required to stop macro droplets from permeating out or into the face covering. Such materials can also be boiled for reuse. Four layers of loosely knit or woven fabrics independent of the composition (e.g. cotton, polyester, nylon or blends) are likely to be effective source controls. One layer of tightly woven fabrics combined with multiple layers of loosely knit or woven fabrics in addition to being source controls can have sub-micron filtration efficiencies > 40% and may offer some protection to the wearer. However, the pressure drop across such fabrics can be high (> 100 Pa).
Comprehensive characterization of protective face coverings made from household fabrics
Face coverings constitute an important strategy for containing pandemics, such as COVID-19. Infection from airborne respiratory viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can occur in at least three modes; tiny and/or dried aerosols (typically < 1.0 μm) generated through multiple mechanisms including talking, breathing, singing, large droplets (> 0.5 μm) generated during coughing and sneezing, and macro drops transmitted via fomites. While there is a growing number of studies looking at the performance of household materials against some of these situations, to date, there has not been any systematic characterization of household materials against all three modes. A three-step methodology was developed and used to characterize the performance of 21 different household materials with various material compositions (e.g. cotton, polyester, polypropylene, cellulose and blends) using submicron sodium chloride aerosols, water droplets, and mucous mimicking macro droplets over an aerosol-droplet size range of ~ 20 nm to 0.6 cm. Except for one thousand-thread-count cotton, most single-layered materials had filtration efficiencies < 20% for sub-micron solid aerosols. However, several of these materials stopped > 80% of larger droplets, even at sneeze-velocities of up to 1700 cm/s. Three or four layers of the same material, or combination materials, would be required to stop macro droplets from permeating out or into the face covering. Such materials can also be boiled for reuse. Four layers of loosely knit or woven fabrics independent of the composition (e.g. cotton, polyester, nylon or blends) are likely to be effective source controls. One layer of tightly woven fabrics combined with multiple layers of loosely knit or woven fabrics in addition to being source controls can have sub-micron filtration efficiencies > 40% and may offer some protection to the wearer. However, the pressure drop across such fabrics can be high (> 100 Pa).
Long-Term Prediction of Creep and Stress-Relaxation Behaviour in Synthetic Fabrics Using the Time–Temperature Superposition Principle
In this work, time and temperature-dependent viscoelastic properties, i.e., creep and stress relaxation of synthetic fabrics have been studied using the dynamic mechanical analyser. Three different fabric materials viz. polyester (PET), polypropylene (PP) and Nylon 6,6 (PA) were used and tests were carried out at a wide range of temperatures from 35 to 110 °C with an interval of 15 °C after each test. Thereafter, the master curve for each fabric is generated at 35 °C using the time–temperature superposition (TTS) principle which extrapolates short time experimental data to a longer time scale by shifting experimental curves of different temperatures toward the reference temperature (35 °C) and superimposes them to obtain a smooth master curve. From the creep study, it is observed that PET fabric is expected to give greater creep resistance with minimal deformation in creep strain of about 39% followed by 53% in PA and 128% in PP even after 10 years. Besides, in the stress relaxation study, relaxation modulus for all fabrics tends to decrease with increasing temperature. It is found that PA fabric showed a slow reduction of relaxation modulus even after 10 years, which gives about 55% reduction followed by PET (68%) and PP (75%) from its initial value. In addition, true stress versus time curves showed that a higher true stress value in PA followed by PP and PET is referring to its higher relaxation modulus. It was found that initial modulus, glass transition temperature ( T g ) and crystallinity of fibre plays an important role in determining creep and stress relaxation behaviour of the fabrics. On the other side, the correlation between experimental data and theoretical data ascertains the use of viscoelastic Burger’s model and Weibull distribution equation model for creep and stress relaxation.