Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,151
result(s) for
"Systemic Inflammatory Response Syndrome - blood"
Sort by:
Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study
by
Estève, Laurent
,
Bournaud, Elsa
,
Pachot, Alexandre
in
Biomarkers
,
Cohort analysis
,
Confidence intervals
2018
PurposeSepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated.AimTo assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS.MethodsThe CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and—for those patients included within working hours—14 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers.ResultsDuring the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68–0.84]).ConclusionsThe circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone.
Journal Article
DNAemia Detection by Multiplex PCR and Biomarkers for Infection in Systemic Inflammatory Response Syndrome Patients
by
Parlato, Marianna
,
Fitting, Catherine
,
Adib-Conquy, Minou
in
Aged
,
Aged, 80 and over
,
Analysis
2012
Fast and reliable assays to precisely define the nature of the infectious agents causing sepsis are eagerly anticipated. New molecular biology techniques are now available to define the presence of bacterial or fungal DNA within the bloodstream of sepsis patients. We have used a new technique (VYOO®) that allows the enrichment of microbial DNA before a multiplex polymerase chain reaction (PCR) for pathogen detection provided by SIRS-Lab (Jena, Germany). We analyzed 72 sepsis patients and 14 non-infectious systemic inflammatory response syndrome (SIRS) patients. Among the sepsis patients, 20 had a positive blood culture and 35 had a positive microbiology in other biological samples. Of these, 51.4% were positive using the VYOO® test. Among the sepsis patients with a negative microbiology and the non-infectious SIRS, 29.4% and 14.2% were positive with the VYOO® test, respectively. The concordance in bacterial identification between microbiology and the VYOO® test was 46.2%. This study demonstrates that these new technologies offer great hopes, but improvements are still needed.
Journal Article
Distinct clinical and immunological features of SARS–CoV-2–induced multisystem inflammatory syndrome in children
by
Cohen, Ezra
,
Hoyt, Kacie J.
,
Dionne, Audrey
in
Adolescent
,
Adrenal Cortex Hormones - administration & dosage
,
Allergies
2020
BACKGROUNDPediatric SARS-CoV-2 infection can be complicated by a dangerous hyperinflammatory condition termed multisystem inflammatory syndrome in children (MIS-C). The clinical and immunologic spectrum of MIS-C and its relationship to other inflammatory conditions of childhood have not been studied in detail.METHODSWe retrospectively studied confirmed cases of MIS-C at our institution from March to June 2020. The clinical characteristics, laboratory studies, and treatment response were collected. Data were compared with historic cohorts of Kawasaki disease (KD) and macrophage activation syndrome (MAS).RESULTSTwenty-eight patients fulfilled the case definition of MIS-C. Median age at presentation was 9 years (range: 1 month to 17 years); 50% of patients had preexisting conditions. All patients had laboratory confirmation of SARS-CoV-2 infection. Seventeen patients (61%) required intensive care, including 7 patients (25%) who required inotrope support. Seven patients (25%) met criteria for complete or incomplete KD, and coronary abnormalities were found in 6 cases. Lymphopenia, thrombocytopenia, and elevation in inflammatory markers, D-dimer, B-type natriuretic peptide, IL-6, and IL-10 levels were common but not ubiquitous. Cytopenias distinguished MIS-C from KD and the degree of hyperferritinemia and pattern of cytokine production differed between MIS-C and MAS. Immunomodulatory therapy given to patients with MIS-C included intravenous immune globulin (IVIG) (71%), corticosteroids (61%), and anakinra (18%). Clinical and laboratory improvement were observed in all cases, including 6 cases that did not require immunomodulatory therapy. No mortality was recorded in this cohort.CONCLUSIONMIS-C encompasses a broad phenotypic spectrum with clinical and laboratory features distinct from KD and MAS.FUNDINGThis work was supported by the National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases; the National Institute of Allergy and Infectious Diseases; Rheumatology Research Foundation Investigator Awards and Medical Education Award; Boston Children's Hospital Faculty Career Development Awards; the McCance Family Foundation; and the Samara Jan Turkel Center.
Journal Article
Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection
2020
Recent reports highlight a new clinical syndrome in children related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
1
—multisystem inflammatory syndrome in children (MIS-C)—which comprises multiorgan dysfunction and systemic inflammation
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
–
13
. We performed peripheral leukocyte phenotyping in 25 children with MIS-C, in the acute (
n
= 23; worst illness within 72 h of admission), resolution (
n
= 14; clinical improvement) and convalescent (
n
= 10; first outpatient visit) phases of the illness and used samples from seven age-matched healthy controls for comparisons. Among the MIS-C cohort, 17 (68%) children were SARS-CoV-2 seropositive, suggesting previous SARS-CoV-2 infections
14
,
15
, and these children had more severe disease. In the acute phase of MIS-C, we observed high levels of interleukin-1β (IL-1β), IL-6, IL-8, IL-10, IL-17, interferon-γ and differential T and B cell subset lymphopenia. High CD64 expression on neutrophils and monocytes, and high HLA-DR expression on γδ and CD4
+
CCR7
+
T cells in the acute phase, suggested that these immune cell populations were activated. Antigen-presenting cells had low HLA-DR and CD86 expression, potentially indicative of impaired antigen presentation. These features normalized over the resolution and convalescence phases. Overall, MIS-C presents as an immunopathogenic illness
1
and appears distinct from Kawasaki disease.
Characterization of a cohort of children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection provides insights into the immunopathogenic features of the disease.
Journal Article
Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation
2021
The core pathology of coronavirus disease 2019 (COVID-19) is infection of airway cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in excessive inflammation and respiratory disease, with cytokine storm and acute respiratory distress syndrome implicated in the most severe cases. Thrombotic complications are a major cause of morbidity and mortality in patients with COVID-19. Patients with pre-existing cardiovascular disease and/or traditional cardiovascular risk factors, including obesity, diabetes mellitus, hypertension and advanced age, are at the highest risk of death from COVID-19. In this Review, we summarize new lines of evidence that point to both platelet and endothelial dysfunction as essential components of COVID-19 pathology and describe the mechanisms that might account for the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19. We highlight the distinct contributions of coagulopathy, thrombocytopathy and endotheliopathy to the pathogenesis of COVID-19 and discuss potential therapeutic strategies in the management of patients with COVD-19. Harnessing the expertise of the biomedical and clinical communities is imperative to expand the available therapeutics beyond anticoagulants and to target both thrombocytopathy and endotheliopathy. Only with such collaborative efforts can we better prepare for further waves and for future coronavirus-related pandemics.This Review summarizes the latest evidence indicating that platelet and endothelial dysfunction are essential components of COVID-19 pathology, describes the potential mechanisms underlying the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19, and highlights the roles of coagulopathy, thrombocytopathy and endotheliopathy in COVID-19 pathogenesis.
Journal Article
Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS–CoV-2
by
Henrickson, Sarah E.
,
Barrett, David M.
,
Behrens, Edward M.
in
Adolescent
,
Betacoronavirus - metabolism
,
Child
2020
BACKGROUNDInitial reports from the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic described children as being less susceptible to coronavirus disease 2019 (COVID-19) than adults. Subsequently, a severe and novel pediatric disorder termed multisystem inflammatory syndrome in children (MIS-C) emerged. We report on unique hematologic and immunologic parameters that distinguish between COVID-19 and MIS-C and provide insight into pathophysiology.METHODSWe prospectively enrolled hospitalized patients with evidence of SARS-CoV-2 infection and classified them as having MIS-C or COVID-19. Patients with COVID-19 were classified as having either minimal or severe disease. Cytokine profiles, viral cycle thresholds (Cts), blood smears, and soluble C5b-9 values were analyzed with clinical data.RESULTSTwenty patients were enrolled (9 severe COVID-19, 5 minimal COVID-19, and 6 MIS-C). Five cytokines (IFN-γ, IL-10, IL-6, IL-8, and TNF-α) contributed to the analysis. TNF-α and IL-10 discriminated between patients with MIS-C and severe COVID-19. The presence of burr cells on blood smears, as well as Cts, differentiated between patients with severe COVID-19 and those with MIS-C.CONCLUSIONPediatric patients with SARS-CoV-2 are at risk for critical illness with severe COVID-19 and MIS-C. Cytokine profiling and examination of peripheral blood smears may distinguish between patients with MIS-C and those with severe COVID-19.FUNDINGFinancial support for this project was provided by CHOP Frontiers Program Immune Dysregulation Team; National Institute of Allergy and Infectious Diseases; National Cancer Institute; the Leukemia and Lymphoma Society; Cookies for Kids Cancer; Alex's Lemonade Stand Foundation for Childhood Cancer; Children's Oncology Group; Stand UP 2 Cancer; Team Connor; the Kate Amato Foundations; Burroughs Wellcome Fund CAMS; the Clinical Immunology Society; the American Academy of Allergy, Asthma, and Immunology; and the Institute for Translational Medicine and Therapeutics.
Journal Article
Cytokines in Inflammatory Disease
by
Vollrath, Jan Tilmann
,
Relja, Borna
,
Kany, Shinwan
in
Animals
,
Arthritis
,
Autoimmune diseases
2019
This review aims to briefly discuss a short list of a broad variety of inflammatory cytokines. Numerous studies have implicated that inflammatory cytokines exert important effects with regard to various inflammatory diseases, yet the reports on their specific roles are not always consistent. They can be used as biomarkers to indicate or monitor disease or its progress, and also may serve as clinically applicable parameters for therapies. Yet, their precise role is not always clearly defined. Thus, in this review, we focus on the existing literature dealing with the biology of cytokines interleukin (IL)-6, IL-1, IL-33, tumor necrosis factor-alpha (TNF-α), IL-10, and IL-8. We will briefly focus on the correlations and role of these inflammatory mediators in the genesis of inflammatory impacts (e.g., shock, trauma, immune dysregulation, osteoporosis, and/or critical illness).
Journal Article
Immune response to intravenous immunoglobulin in patients with Kawasaki disease and MIS-C
by
Miao, Huilai
,
Pena, Cathleen J.
,
Tremoulet, Adriana H.
in
1-Phosphatidylinositol 3-kinase
,
Allergies
,
Aneurysms
2021
BACKGROUNDMultisystem inflammatory syndrome in children (MIS-C) is a rare but potentially severe illness that follows exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Kawasaki disease (KD) shares several clinical features with MIS-C, which prompted the use of intravenous immunoglobulin (IVIG), a mainstay therapy for KD. Both diseases share a robust activation of the innate immune system, including the IL-1 signaling pathway, and IL-1 blockade has been used for the treatment of both MIS-C and KD. The mechanism of action of IVIG in these 2 diseases and the cellular source of IL-1β have not been defined.METHODSThe effects of IVIG on peripheral blood leukocyte populations from patients with MIS-C and KD were examined using flow cytometry and mass cytometry (CyTOF) and live-cell imaging.RESULTSCirculating neutrophils were highly activated in patients with KD and MIS-C and were a major source of IL-1β. Following IVIG treatment, activated IL-1β+ neutrophils were reduced in the circulation. In vitro, IVIG was a potent activator of neutrophil cell death via PI3K and NADPH oxidase, but independently of caspase activation.CONCLUSIONSActivated neutrophils expressing IL-1β can be targeted by IVIG, supporting its use in both KD and MIS-C to ameliorate inflammation.FUNDINGPatient Centered Outcomes Research Institute; NIH; American Asthma Foundation; American Heart Association; Novo Nordisk Foundation; NIGMS; American Academy of Allergy, Asthma and Immunology Foundation.
Journal Article
Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department
2020
The 2019 coronavirus disease (COVID-19) has not appeared to affect children as severely as adults. However, approximately 1 month after the COVID-19 peak in New York City in April 2020, cases of children with prolonged fevers abruptly developing inflammatory shock-like states have been reported in Western Europe and the United States.
This case series describes four previously healthy children with COVID-19 infection confirmed by serologic antibody testing, but negative by nasopharyngeal RT-PCR swab, presenting to the Pediatric Emergency Department (PED) with prolonged fever (5 or more days) and abrupt onset of hemodynamic instability with elevated serologic inflammatory markers and cytokine levels (IL-6, IL-8 and TNF-α).
Emergency physicians must maintain a high clinical suspicion for this COVID-19 associated post-infectious cytokine release syndrome, with features that overlap with Kawasaki Disease (KD) and Toxic Shock Syndrome (TSS) in children with recent or current COVID-19 infection, as patients can decompensate quickly.
•COVID-19 post-infectious cytokine release syndrome is a novel disease in children.•This syndrome has similar features as Kawasaki Disease and Toxic Shock Syndrome.•Features include prolonged fever, gastrointestinal symptoms with or without rash..•These patients decompensate quickly and require admission to monitor for stability
Journal Article
Humoral signatures of protective and pathological SARS-CoV-2 infection in children
by
Atyeo, Caroline
,
Fischer, Eric S.
,
Burke, John S.
in
631/250/2152/2153
,
631/250/2152/2153/1291
,
631/250/255
2021
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2.
A study of multisystem inflammatory syndrome in children (MIS-C) shows maintenance of elevated levels of monocyte-activating pathogen-specific IgG not seen in children infected with SARS-CoV-2 who do not develop MIS-C.
Journal Article