Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
88,291 result(s) for "Systems stability"
Sort by:
Robustness and evolvability in living systems
All living things are remarkably complex, yet their DNA is unstable, undergoing countless random mutations over generations. Despite this instability, most animals do not grow two heads or die, plants continue to thrive, and bacteria continue to divide.Robustness and Evolvability in Living Systemstackles this perplexing paradox. The book explores why genetic changes do not cause organisms to fail catastrophically and how evolution shapes organisms' robustness. Andreas Wagner looks at this problem from the ground up, starting with the alphabet of DNA, the genetic code, RNA, and protein molecules, moving on to genetic networks and embryonic development, and working his way up to whole organisms. He then develops an evolutionary explanation for robustness. Wagner shows how evolution by natural selection preferentially finds and favors robust solutions to the problems organisms face in surviving and reproducing. Such robustness, he argues, also enhances the potential for future evolutionary innovation. Wagner also argues that robustness has less to do with organisms having plenty of spare parts (the redundancy theory that has been popular) and more to do with the reality that mutations can change organisms in ways that do not substantively affect their fitness. Unparalleled in its field, this book offers the most detailed analysis available of all facets of robustness within organisms. It will appeal not only to biologists but also to engineers interested in the design of robust systems and to social scientists concerned with robustness in human communities and populations.
A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges
Power systems are the most complex systems and have great importance in modern life. They have direct impacts on the modernization, economic, political and social aspects. To operate such systems in a stable mode, several control and protection techniques are required. However, modern systems are equipped with several protection schemes with the aim of avoiding the unpredicted events and power outages, power systems are still encountering emergency and mal-operation situations. The most severe emergencies put the whole or at least a part of the system in danger. If the emergency is not well managed, the power system is likely to have cascading failures that might lead to a blackout. Due to the consequences, many countries around the world have research and expert teams who work to avoid blackouts on their systems. In this paper, a comprehensive review on the major blackouts and cascading events that have occurred in the last decade are introduced. A particular focus is given on the US power system outages and their causes since it is one of the leading power producers in the world and it is also due to the ready availability of data for the past events. The paper also highlights the root causes of different blackouts around the globe. Furthermore, blackout and cascading analysis methods and the consequences of blackouts are surveyed. Moreover, the challenges in the existing protective schemes and research gaps in the topic of power system blackout and cascading events are marked out. Research directions and issues to be considered in future power system blackout studies are also proposed.
A Recap of Voltage Stability Indices in the Past Three Decades
Increasing demand for electricity and the modernization of power systems within competitive markets has induced power systems to operate close to their stability limits. Therefore, the continuous monitoring and control of power systems through voltage stability indices is urgently needed. This is the first-ever effort to examine more than 40 voltage stability indices based on their formulation, application, performance, and assessment measures. These indices are sorted based on a logical and chronological order considering the most recent indices to be applied worldwide. However, the generalizability of these indices in terms of multivariable objectives is limited. Despite its limitation, this study systematically reviews available indices in the literature within the past three decades to compile an integrated knowledge base with an up-to-date exposition. This is followed by a comparative analysis in terms of their similarity, functionality, applicability, formulation, merit, demerit, and overall performance. Also, a broad categorization of voltage stability indices is addressed. This study serves as an exhaustive roadmap of the issue and can be counted as a reference for planning and operation in the context of voltage stability for students, researchers, scholars, and practitioners.
Voltage Stability of Power Systems with Renewable-Energy Inverter-Based Generators: A Review
The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.
Fault Current Limiters in Power Systems: A Comprehensive Review
Power systems are becoming more and more complex in nature due to the integration of several power electronic devices. Protection of such systems and augmentation of reliability as well as stability highly depend on limiting the fault currents. Several fault current limiters (FCLs) have been applied in power systems as they provide rapid and efficient fault current limitation. This paper presents a comprehensive literature review of the application of different types of FCLs in power systems. Applications of superconducting and non-superconducting FCLs are categorized as: (1) application in generation, transmission and distribution networks; (2) application in alternating current (AC)/direct current (DC) systems; (3) application in renewable energy resources integration; (4) application in distributed generation (DG); and (5) application for reliability, stability and fault ride through capability enhancement. Modeling, impact and control strategies of several FCLs in power systems are presented with practical implementation cases in different countries. Recommendations are provided to improve the performance of the FCLs in power systems with modification of its structures, optimal placement and proper control design. This review paper will be a good foundation for researchers working in power system stability issues and for industry to implement the ongoing research advancement in real systems.