Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
296,172 result(s) for "T cell receptor"
Sort by:
A Comprehensive Annotation of the Channel Catfish (Ictalurus punctatus) T Cell Receptor Alpha/Delta, Beta, and Gamma Loci
The complete germline repertoires of the channel catfish, Ictalurus punctatus , T cell receptor (TR) loci, TRAD, TRB, and TRG were obtained by analyzing genomic data from PacBio sequencing. The catfish TRB locus spans 214 kb, and contains 112 TRBV genes, a single TRBD gene, 31 TRBJ genes and two TRBC genes. In contrast, the TRAD locus is very large, at 1,285 kb. It consists of four TRDD genes, one TRDJ gene followed by the exons for TRDC, 125 TRAJ genes and the exons encoding the TRAC. Downstream of the TRAC, are 140 TRADV genes, and all of them are in the opposite transcriptional orientation. The catfish TRGC locus spans 151 kb and consists of four diverse V-J-C cassettes. Altogether, this locus contains 15 TRGV genes and 10 TRGJ genes. To place our data into context, we also analyzed the zebrafish TR germline gene repertoires. Overall, our findings demonstrated that catfish possesses a more restricted repertoire compared to the zebrafish. For example, the 140 TRADV genes in catfish form eight subgroups based on members sharing 75% nucleotide identity. However, the 149 TRAD genes in zebrafish form 53 subgroups. This difference in subgroup numbers between catfish and zebrafish is best explained by expansions of catfish TRADV subgroups, which likely occurred through multiple, relatively recent gene duplications. Similarly, 112 catfish TRBV genes form 30 subgroups, while the 51 zebrafish TRBV genes are placed into 36 subgroups. Notably, several catfish and zebrafish TRB subgroups share ancestor nodes. In addition, the complete catfish TR gene annotation was used to compile a TR gene segment database, which was applied in clonotype analysis of an available gynogenetic channel catfish transcriptome. Combined, the TR annotation and clonotype analysis suggested that the expressed TRA, TRB, and TRD repertoires were generated by different mechanisms. The diversity of the TRB repertoire depends on the number of TRBV subgroups and TRBJ genes, while TRA diversity relies on the many different TRAJ genes, which appear to be only minimally trimmed. In contrast, TRD diversity relies on nucleotide additions and the utilization of up to four TRDD segments.
Evaluation of chimeric antigen receptor of humanized rabbit‐derived T cell receptor‐like antibody
T‐cell receptor (TCR)‐like Abs that specifically recognize antigenic peptides presented on MHC molecules have been developed for next‐generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR‐like Abs using a rabbit system. We humanized previously generated rabbit‐derived TCR‐like Abs reacting Epstein–Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA‐A24 molecules, produced chimeric antigen receptor (CAR)‐T cells, and evaluated their antitumor effects using in vitro and in vivo tumor models. Humanization of the rabbit‐derived TCR‐like Abs using the complementarity‐determining region grafting technology maintained their specificity and affinity. We prepared a second‐generation CAR using single‐chain variable fragment of the humanized TCR‐like Abs and then transduced them into human T cells. The CAR‐T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen‐specific manner in vitro. They also demonstrated antitumor activity in a mouse xenograft model. We report the generation of CAR‐T cells using humanized rabbit‐derived TCR‐like Abs. Together with our established and efficient generation procedure for TCR‐like Abs using rabbits, our platform for the clinical application of humanized rabbit‐derived TCR‐like Abs to CAR‐T cells will help improve next‐generation cancer immunotherapy. The humanized TCR‐like antibody had a similar specificity and affinity for BRLF1/A24 as the original rabbit antibody. The TCR‐like CAR‐T cells generated from the humanized rabbit‐derived TCR‐like antibody demonstrated efficient cytotoxicity in vitro and in vivo.
Empirical and Rational Design of T Cell Receptor-Based Immunotherapies
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor’s (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Detecting T cell receptors involved in immune responses from single repertoire snapshots
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
Adoptive cellular therapies: the current landscape
For many cancer types, the immune system plays an essential role in their development and growth. Based on these rather novel insights, immunotherapeutic strategies have been developed. In the past decade, immune checkpoint blockade has demonstrated a major breakthrough in cancer treatment and has currently been approved for the treatment of multiple tumor types. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) or gene-modified T cells expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) is another strategy to modify the immune system to recognize tumor cells and thus carry out an anti-tumor effector function. These treatments have shown promising results in various tumor types, and multiple clinical trials are being conducted worldwide to further optimize this treatment modality. Most successful results were obtained in hematological malignancies with the use of CD19-directed CAR T cell therapy and already led to the commercial approval by the FDA. This review provides an overview of the developments in ACT, the associated toxicity, and the future potential of ACT in cancer treatment.
Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment
In several murine models of autoimmune arthritis, Th17 cells are the dominant initiators of inflammation. In human arthritis the majority of IL-17–secreting cells within the joint express a cytokine phenotype intermediate between Th17 and Th1. Here we show that Th17/1 cells from the joints of children with inflammatory arthritis express high levels of both Th17 and Th1 lineage-specific transcription factors, RORC2 and T-bet. Modeling the generation of Th17/1 in vitro, we show that Th17 cells \"convert\" to Th17/1 under conditions that mimic the disease site, namely low TGFβ and high IL-12 levels, whereas Th1 cells cannot convert to Th17. Th17/1 cells from the inflamed joint share T-cell receptor (TCR) clonality with Th17 cells, suggesting a shared clonal origin between Th17 and Th17/1 cells in arthritis. Using CD161, a lectin-like receptor that is a marker of human Th17, we show synovial Th17 and Th17/1 cells, and unexpectedly, a large proportion of Th1 cells express CD161. We provide evidence to support a Th17 origin for Th1 cells expressing CD161. In vitro, Th17 cells that convert to a Th1 phenotype maintain CD161 expression. In the joint CD161+ Th1 cells share features with Th17 cells, with shared TCR clonality, expression of RORC2 and CCR6 and response to IL-23, although they are IL-17 negative. We propose that the Th17 phenotype may be unstable and that Th17 cells may convert to Th17/1 and Th1 cells in human arthritis. Therefore therapies targeting the induction of Th17 cells could also attenuate Th17/1 and Th1 effector populations within the inflamed joint.
Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Predicting recognition between T cell receptors and epitopes with TCRGP
Adaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals’ immune status in different disorders. For this task, we have developed TCRGP, a novel Gaussian process method that predicts if TCRs recognize specified epitopes. TCRGP can utilize the amino acid sequences of the complementarity determining regions (CDRs) from TCR α and TCR β chains and learn which CDRs are important in recognizing different epitopes. Our comprehensive evaluation with epitope-specific TCR sequencing data shows that TCRGP achieves on average higher prediction accuracy in terms of AUROC score than existing state-of-the-art methods in epitope-specificity predictions. We also propose a novel analysis approach for combined single-cell RNA and TCR αβ (scRNA+TCR αβ ) sequencing data by quantifying epitope-specific TCRs with TCRGP and identify HBV-epitope specific T cells and their transcriptomic states in hepatocellular carcinoma patients.
Preparing Unbiased T-Cell Receptor and Antibody cDNA Libraries for the Deep Next Generation Sequencing Profiling
High-throughput sequencing has the power to reveal the nature of adaptive immunity as represented by the full complexity of T-cell receptor (TCR) and antibody (IG) repertoires, but is at present severely compromised by the quantitative bias, bottlenecks, and accumulated errors that inevitably occur in the course of library preparation and sequencing. Here we report an optimized protocol for the unbiased preparation of TCR and IG cDNA libraries for high-throughput sequencing, starting from thousands or millions of live cells in an investigated sample. Critical points to control are revealed, along with tips that allow researchers to minimize quantitative bias, accumulated errors, and cross-sample contamination at each stage, and to enhance the subsequent bioinformatic analysis. The protocol is simple, reliable, and can be performed in 1-2 days.
From bench to bedside: the history and progress of CAR T cell therapy
Chimeric antigen receptor (CAR) T cell therapy represents a major breakthrough in cancer care since the approval of tisagenlecleucel by the Food and Drug Administration in 2017 for the treatment of pediatric and young adult patients with relapsed or refractory acute lymphocytic leukemia. As of April 2023, six CAR T cell therapies have been approved, demonstrating unprecedented efficacy in patients with B-cell malignancies and multiple myeloma. However, adverse events such as cytokine release syndrome and immune effector cell-associated neurotoxicity pose significant challenges to CAR T cell therapy. The severity of these adverse events correlates with the pretreatment tumor burden, where a higher tumor burden results in more severe consequences. This observation is supported by the application of CD19-targeted CAR T cell therapy in autoimmune diseases including systemic lupus erythematosus and antisynthetase syndrome. These results indicate that initiating CAR T cell therapy early at low tumor burden or using debulking strategy prior to CAR T cell infusion may reduce the severity of adverse events. In addition, CAR T cell therapy is expensive and has limited effectiveness against solid tumors. In this article, we review the critical steps that led to this groundbreaking therapy and explore ongoing efforts to overcome these challenges. With the promise of more effective and safer CAR T cell therapies in development, we are optimistic that a broader range of cancer patients will benefit from this revolutionary therapy in the foreseeable future.