Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
290,593 result(s) for "TURBINES"
Sort by:
Advances in Wind Turbine Blade Design and Materials
Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the worlds consumption of electricity by 2021. This book reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades This book offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics.
Wind resource assessment and micro-siting : science and engineering
Covering all the key areas of wind resource assessment technologies from an engineer's perspective, this go-to reference focuses on wind analysis for wind plant siting, design and analysis. Addressing all aspects, from atmospheric boundary layer characteristics to wind resource measurement systems, and from uncertainties in measurements, computations and analyses to plant performance, it also covers the basics of atmospheric science through to turbine siting, turbine responses and environmental impacts.
Increasing the Power Production of Vertical-Axis Wind-Turbine Farms Using Synergistic Clustering
Vertical-axis wind turbines (VAWTs) are being reconsidered as a complementary technology to the more widely used horizontal-axis wind turbines (HAWTs) due to their unique suitability for offshore deployments. In addition, field experiments have confirmed that vertical-axis wind turbines can interact synergistically to enhance the total power production when placed in close proximity. Here, we use an actuator line model in a large-eddy simulation to test novel VAWT farm configurations that exploit these synergistic interactions. We first design clusters with three turbines each that preserve the omni-directionality of vertical-axis wind turbines, and optimize the distance between the clustered turbines. We then configure farms based on clusters, rather than individual turbines. The simulations confirm that vertical-axis wind turbines have a positive influence on each other when packed in well-designed clusters: such configurations increase the power generation of a single turbine by about 10 percent. In addition, the cluster designs allow for closer turbine spacing resulting in about three times the number of turbines for a given land area compared to conventional configurations. Therefore, both the turbine and wind-farm efficiencies are improved, leading to a significant increase in the density of power production per unit land area.
Innovation in wind turbine design
This text covers the basics of design and the reasons behind design choices, as well as the methodology for evaluating innovative systems and components, always referencing a state of the art system for comparison.
Verification and Validation of Model-Scale Turbine Performance and Control Strategies for the IEA Wind 15 MW Reference Wind Turbine
To enable the fast growth of the floating offshore wind industry, simulation models must be validated with experimental data. Floating wind model-scale experiments in wind–wave facilities have been performed over the last two decades with varying levels of fidelity and limitations. However, the turbine controls in these experiments have considered only limited control strategies and implementations. To allow for control co-design, this research focuses on implementing and experimentally validating more advanced turbine control actions and strategies in a wind–wave basin for a 1:70-scale model of the International Energy Agency’s wind 15 MW reference wind turbine. The control strategies analyzed include torque control, collective pitch control, and transition region control (setpoint smoothing). Our experimental and numerical results include the effects of varying rotor speeds, blade pitches, and wind environments on the turbine thrust and torque. Numerical models from three different software tools are presented and compared to the experimental results. Their ability to effectively represent the aero-dynamic response of the wind turbine to the control actions is successfully validated. Finally, turbine controller tuning parameters based on the derivatives of thrust and torque are derived to allow for improved offshore wind turbine dynamics and to validate the ability of modeling tools to model the dynamics of floating offshore wind turbines with control co-design.
Wind-Turbine and Wind-Farm Flows: A Review
Wind energy, together with other renewable energy sources, are expected to grow substantially in the coming decades and play a key role in mitigating climate change and achieving energy sustainability. One of the main challenges in optimizing the design, operation, control, and grid integration of wind farms is the prediction of their performance, owing to the complex multiscale two-way interactions between wind farms and the turbulent atmospheric boundary layer (ABL). From a fluid mechanical perspective, these interactions are complicated by the high Reynolds number of the ABL flow, its inherent unsteadiness due to the diurnal cycle and synoptic-forcing variability, the ubiquitous nature of thermal effects, and the heterogeneity of the terrain. Particularly important is the effect of ABL turbulence on wind-turbine wake flows and their superposition, as they are responsible for considerable turbine power losses and fatigue loads in wind farms. These flow interactions affect, in turn, the structure of the ABL and the turbulent fluxes of momentum and scalars. This review summarizes recent experimental, computational, and theoretical research efforts that have contributed to improving our understanding and ability to predict the interactions of ABL flow with wind turbines and wind farms.
Gas Turbine Heat Transfer and Cooling Technology
A comprehensive reference for engineers and researchers, this second edition focuses on gas turbine heat transfer issues and their associated cooling technologies for aircraft and land-based gas turbines. It provides information on state-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling schemes.