Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,988
result(s) for
"Tab"
Sort by:
Enhancement of Jet Mixing using Stepped Tandem Tabs
by
Thanigaiarasu, S
,
Venkatramanan, S
,
Kaushik, M
in
Aerospace engineering
,
Aspect ratio
,
Configurations
2024
Mixing characteristics of jet emerging from a subsonic nozzle exit has been experimented and the results are compared with uncontrolled jet and controlled jet configurations. The mixing enhancement was achieved using a passive method of jet control in which tandem tabs arrangement with rectangular cross section are fixed at the nozzle exit. Two Tab configurations, the Tandem tab (TT) and Stepped Tandem Tab (STT) are used to enhance the mixing characteristics of the jet, the aspect ratio (length /width) of the tabs was 1.67 offering a blockage ratio of 9.55% to the nozzle exit. The blockage ratio of TT and STT configurations are maintained to be equal so that the mixing characteristics can be compared. The axial and radial jet spread are compared for nozzle exit Mach numbers of 0.6, 0.8 and 1.0. The TT controlled jet offered a potential core reduction of 63%, 78% and 82% for Mach numbers 0.6, 0.8 and 1.0 respectively. The STT controlled jet offered a potential core reduction of 89%, 90% and 85% for Mach numbers 0.6, 0.8 and 1.0 respectively. The radial spread of uncontrolled jet, controlled jet with TT and STT are plotted at several X/D locations and found that the controlled jets have more jet spread in both radial directions. A simulation is conducted for jets with exit Mach number 0.8 and the results are validated with the experimental findings. Based on the preliminary experimentation and computation, the STT controlled jet achieved better jet mixing through more potential core reduction and radial spread characteristics as compared to the TT configuration and base nozzle.
Journal Article
Control of Subsonic and Sonic Jets with Limiting Tabs
2017
Aerodynamic mixing of subsonic and sonic jets with limiting tabs, with and without corrugations, has been studied experimentally. Limiting tab located at the nozzle exit and at a downstream distance of 0.5D has been considered in this study. Mixing caused by the tab at nozzle exit is found to be better that of tab at 0.5D, for both plain and corrugated geometries. Also, both tabs caused better mixing for underexpanded sonic jets than the correctly expanded sonic jet and subsonic jets. At nozzle pressure ratio 3 the plain tab at the nozzle exit reduced the core by about 56 % and the corrugated tab by about 51 %. But when the plain tab is placed at 0.5D the jet mixing is retarded. However, the corrugated tab at 0.5D enhances the mixing, though not up to the level of the same tab at 0D, at all Mach numbers except 0.6. The maximum reduction of core caused by shifted corrugated tab is 14 % for Mach 0.8 jet.
Journal Article
Study on the Effect of Sonic Air Tab Location in Supersonic Jet Control
by
Elangovan, S
,
Perumal, G Mahendra
,
Kumar, S M Aravindh
in
Compressed air
,
Jet control
,
Nozzles
2024
This research presents the effectiveness of sonic air tabs positioned at varying distances from the nozzle exit in a Mach 2.1 supersonic jet, focusing on their impact on aerodynamic mixing efficiency. The study involved placing the air tabs at two locations: directly at the nozzle exit (0D) and 0.5D downstream from the nozzle exit. The Injection Pressure Ratio (IPR) was adjusted between 3 and 6 while maintaining a constant Nozzle Pressure Ratio (NPR) of 6. Core length measurements of the jet were conducted using pitot pressure measurements and shadowgraph techniques, comparing controlled and uncontrolled jet conditions. The findings revealed that under an NPR of 6 at OD, the maximum reduction in core length reached 56.4% for IPR 6 and at 0.5D the maximum reduction was 31.4% for IPR 6. As the IPR increased from 3 to 6, the core length reduction rate increased proportionally at both air tab locations. However, the reduction rate was consistently higher when the air tabs were positioned at the nozzle exit compared to the 0.5D location. The results from shadowgraph images aligned with those derived from pitot pressure measurements. In conclusion, for an NPR of 6 positioning sonic air tabs directly at the nozzle exit (0D) proved more efficient than placing them at 0.5D.
Journal Article
Pseudophosphatases as Regulators of MAPK Signaling
2021
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.
Journal Article
TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses
2021
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Journal Article
Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat
2020
The temperature and heat produced by lithium-ion (Li-ion) batteries in electric and hybrid vehicles is an important field of investigation as it determines the power, performance, and cycle life of the battery pack. This paper presented both laboratory data and simulation results at C-rates of 1C, 2C, 3C, and 4C at an ambient temperature of approximately 23 °C. During experiment thermocouples were placed on the surface of the battery. The thermal model assumed constant current discharge and was experimentally validated. It was observed that temperature increased with C-rates at both the surface and the tabs. We note that at 4C the battery temperature increased from 22 °C to 47.40 °C and the tab temperature increased from 22 °C to 52.94 °C. Overall, the simulation results showed that more heat was produced in the cathode than the anode, the primary source of heat was the electrolyte resistance, and the battery temperature was the highest near the tabs and in the internal space of the battery. Simulation of the lithium concentration within the battery showed that the lithium concentration was more uniform in the anode than in the cathode. These results can help the accurate thermal design and thermal management of Li-ion batteries.
Journal Article
Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview
by
Wanner, Johannes
,
Landwehr, Inga
,
Baazouzi, Sabri
in
Aluminum composites
,
Automobile industry
,
battery cell design
2023
Battery cells are the main components of a battery system for electric vehicle batteries. Depending on the manufacturer, three different cell formats are used in the automotive sector (pouch, prismatic, and cylindrical). In the last 3 years, cylindrical cells have gained strong relevance and popularity among automotive manufacturers, mainly driven by innovative cell designs, such as the Tesla tabless design. This paper investigates 19 Li-ion cylindrical battery cells from four cell manufacturers in four formats (18650, 20700, 21700, and 4680). We aim to systematically capture the design features, such as tab design and quality parameters, such as manufacturing tolerances and generically describe cylindrical cells. We identified the basic designs and assigned example cells to them. In addition, we show a comprehensive definition of a tabless design considering the current and heat transport paths. Our findings show that the Tesla 4680 design is quasi-tabless. In addition, we found that 25% of the cathode and 30% of the anode are not notched, resulting in long electrical and thermal transport paths. Based on CT and post-mortem analyses, we show that jelly rolls can be approximated very well with the Archimedean spiral. Furthermore, we compare the gravimetric and volumetric energy density, the impedance, and the heating behavior at the surface and in the center of the jelly rolls. From the generic description, we present and discuss production processes focusing on format and design flexible manufacturing of jelly rolls.
Journal Article
Influence of slot profiles on the characteristics of jets
by
Ganesan, Vinayagamurthy
,
Krishnaraj, Anusindhiya
in
Aircraft control
,
Control equipment
,
Convergent nozzles
2023
Purpose
The purpose of this research is to study and investigate the flow control of 0.8 Mach jet using three tab configurations. The tabs with the slots will eventually lead to generation of vortices and thus enhances the mixing characteristics.
Design/methodology/approach
The jet flow control is achieved by the usage of three tabs, namely, Tab A, Tab B and Tab C that are placed at the exit plane of the convergent nozzle at 180 degrees apart. Three tabs with different slot profile are designed with the same constant blockage ratio of 7.3%. The tabs produce vortices of varying sizes that directly influence and modify the jet structure, thereby enhancing the efficiency in mass entrainment and mixing. The tabs are studied numerically first and then are compared with the results of the experiments.
Findings
The results are compared with that of the results of the uncontrolled jet. For Mach 0.8 jet, Tab C is found to reduce the core length and gives reduction of 90.23%, in comparison to Tab A and Tab B, which provides 84.1% and 87.79%, respectively. The results of numerical are then compared with the centerline results obtained via experiments. With the engagement of Tabs A, B and C, the jet structure is seen to have been modified at Mach 0.8 with Tab C performing better.
Practical implications
The tabs are a passive control device that can be practically enabled in the aircraft nozzles to control the flow and even suppress the noise emanated by the jet. Tabs can be effectively used for better thrust vector control and assist in jet noise suppression. Thus, this study on tabs and its uses are important and essential in aerospace technology.
Originality/value
This particular study on mechanical slotted tabs is innovatively carried out by designing the tabs in such a way that one such has not been designed before. The slots run through the adjacent sides of the tabs which is a novelty in itself, whereas perforations made only through the opposite sides of the tabs are studied by various researchers till now. The slots in the adjacent faces modify the flow physics in such a way that it enhances mixing by the creation of turbulence because of the interaction between the main stream and the secondary jet exactly at the core. So far, such slots and profiles are not investigated. By the usage of such tabs, the flow to mix faster is much closer to the core of the jet by creating mixed size vortices and thus has higher efficiency.
Journal Article
Optimization of LFP Pouch Cell Tab Design for Uniform Temperature Distribution
by
Lee, Jun
,
Chang, Hyukkyun
,
Kim, Chang-Wan
in
3D electrochemical-thermal model
,
Cooling
,
Design and construction
2023
An increase in the size of large-format Li-ion batteries (LIBs) may lead to nonuniform temperature distribution, which degrades the performance and lifespan of the LIBs. To address this issue, we performed design optimization using a 3D electrochemical-thermal coupled model for 55 Ah LFP/graphite large-format pouch cells. To minimize temperature differences in Normal Tab (NT), Lateral Tab (LT), and Counter Tab (CT) types of LIBs, design optimization was performed on the width, height, and attachment position of each positive and negative Table The upper and lower limits of each design variable were set as constraints without exceeding the sum of the total area of the tabs of the initial NT type. Owing to the optimization of the NT, LT, and CT types, the temperature difference in the optimized CT type was 79.2% less than in the initial NT type. Additionally, the potential difference decreased by 37.1%, minimizing ohmic heat. Aging analysis of 2500 cycles was performed to analyze the improvement in the lifespan due to the uniform temperature distribution. Consequently, the capacity retention rate of the optimized CT type was 6.5% higher than that of the initial NT type. Thus, the temperature distribution and lifespan of LIBs were improved by design optimization.
Journal Article