Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
155 result(s) for "Tau hyperphosphorylation"
Sort by:
Inhibition of the Self-Assembly of Aβ and of Tau by Polyphenols: Mechanistic Studies
The amyloid-β (Aβ) peptide and tau protein are thought to play key neuropathogenic roles in Alzheimer’s disease (AD). Both Aβ and tau self-assemble to form the two major pathological hallmarks of AD: amyloid plaques and neurofibrillary tangles, respectively. In this review, we show that naturally occurring polyphenols abundant in fruits, vegetables, red wine, and tea possess the ability to target pathways associated with the formation of assemblies of Aβ and tau. Polyphenols modulate the enzymatic processing of the amyloid-β precursor protein and inhibit toxic Aβ oligomerization by enhancing the clearance of Aβ42 monomer, modulating monomer–monomer interactions and remodeling oligomers to non-toxic forms. Additionally, polyphenols modulate tau hyperphosphorylation and inhibit tau β-sheet formation. The anti-Aβ-self-assembly and anti-tau-self-assembly effects of polyphenols increase their potential as preventive or therapeutic agents against AD, a complex disease that involves many pathological mechanisms.
Metformin Attenuates Tau Pathology in Tau-Seeded PS19 Mice
Accumulation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau is a histopathological hallmark of Alzheimer's disease (AD) and related tauopathies. Growing evidence demonstrated that tau pathology in AD spreads in a prion-like manner. Previous studies showed that metformin might have a positive effect on cognition. However, the underlying mechanisms are still unknown. Therefore, the present study aimed to investigate the effects of metformin on tau propagation. Brain extracts containing tau aggregates were unilaterally injected into the hippocampus and the overlying cerebral cortex of PS19 mice. Metformin was administrated through drinking water for four months, and we observed tau spreading in the brain of tau-seeded PS19 mice. Metformin inhibited the spreading of tau pathology in the ipsilateral hemisphere, attenuated tau pathology in the contralateral hemisphere, and reduced the hyperphosphorylation of tau at Ser202/Thr205, Thr231, and Ser422 sites in the soluble fraction and Ser202/Thr205, Ser262, Thr396, Thr231, and Ser422 sites in the insoluble fraction of tau-seeded PS19 mice brains. Metformin did not affect tau kinases or phosphatase 2A protein levels but reduced mTORC1 protein levels. Additionally, metformin reduced learning and memory deficits of the tau-seeded PS19 mice. These findings indicate that metformin reduced tau hyperphosphorylation, attenuated tau pathology in tau-seeded PS19 mice, and improved learning and memory deficits. These findings highlight the potential mechanisms underlying the beneficial effects of metformin on cognition, implying that metformin could be a promising drug for the prevention and early treatment of AD.
Berberine Reduces Aβ42 Deposition and Tau Hyperphosphorylation via Ameliorating Endoplasmic Reticulum Stress
Alzheimer’s disease (AD) is tightly related to endoplasmic reticulum stress (ER stress), which aggravates two dominant pathological manifestations of AD: senile plaques and neurofibrillary tangles. Berberine is widely applied in the clinical treatment of many diseases and is reported to have anti-AD effects. In the present study, berberine was shown to ameliorate ER stress and cognitive impairment in APP/PS1 mice. We found ER stress plays a role as a central hub for signal transduction, which was evidenced by the hyperactivation of glycogen synthase kinase 3β (GSK3β) to phosphorylate tau and the activation of PRKR-like endoplasmic reticulum kinase (PERK) subsequently to phosphorylate eukaryotic translation initiation factor-2 α (eIF2α). Also, eIF2α has regulated the expression of beta-site APP cleaving enzyme-1 (BACE1), which cleaves APP into pro-oligomerized amyloid beta 42 (Aβ 42 ), the main component of senile plaques, proven by using siRNA targeting at eIF2α. Mechanically, berberine can reduce GSK3β activity, contributing to the downregulation of tau phosphorylation. Berberine also suppressed Aβ 42 production via inhibiting the PERK/eIF2α/BACE1 signaling pathway. Taken together, these findings indicated that berberine had the potential to ameliorate two major pathological manifestations of AD mainly by suppressing ER stress. Our work provided knowledge on the pharmacological intervention of AD and the possible targets for future drug development.
Nec‐1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive symptoms of learning and memory deficits. Such cognitive impairments are attributed to brain atrophy resulting from progressive neuronal and synaptic loss; therefore, alleviation of neural cell death is as an important target of treatment as other classical hallmarks of AD, such as aggregation of amyloid‐β (Aβ) and hyperphosphorylation of tau. Here, we found that an anti‐necroptotic molecule necrostatin‐1 (Nec‐1) directly targets Aβ and tau proteins, alleviates brain cell death and ameliorates cognitive impairment in AD models. In the cortex and hippocampus of APP/PS1 double‐transgenic mice, Nec‐1 treatment reduced the levels of Aβ oligomers, plaques and hyperphosphorylated tau without affecting production of Aβ, while it altered the levels of apoptotic marker proteins. Our results showing multiple beneficial modes of action of Nec‐1 against AD provide evidence that Nec‐1 may serve an important role in the development of preventive approach for AD. Synopsis Aβ plaques, hyperphosphorylated tau, brain atrophy and cognitive deficits are major hallmarks and therapeutic targets of Alzheimer's disease. A small molecule Nec‐1 inhibits Alzheimer‐like pathologies and behaviours of transgenic mice models by alleviating all of these phenotypes. Nec‐1 prevents Aβ‐induced cell death and alters levels of apoptotic marker proteins. Nec‐1 alleviates learning and memory deficits in Alzheimer mice. Nec‐1 reduces oligomers and plaques by direct interaction with Aβ aggregates. Nec‐1 reduces hyperphosphorylation and aggregation of tau by direct interaction. Graphical Abstract Aβ plaques, hyperphosphorylated tau, brain atrophy and cognitive deficits are major hallmarks and therapeutic targets of Alzheimer's disease. A small molecule Nec‐1 inhibits Alzheimer‐like pathologies and behaviours of transgenic mice models by alleviating all of these phenotypes.
Exendin-4 ameliorates tau hyperphosphorylation and cognitive impairment in type 2 diabetes through acting on Wnt/β-catenin/NeuroD1 pathway
Background  Type 2 diabetes (T2D) is an independent risk factor for Alzheimer's disease (AD). Exendin-4 (Ex-4), a widely used glucagon-like peptide-1 receptor agonist drug in the treatment of T2D, has been demonstrated the therapeutic effects on diabetic encephalopathy (DE). Especially, the Ex-4 ameliorates the tau hyperphosphorylation and cognitive impairment in DE. And these crucial alterations are also important bridge between T2D and AD. However, its unique mechanism is unclear. Methods  The db/db mice, high-fat-diet (HFD) / streptozotocin (STZ)—induced diabetic (HF-diabetic) mice, and high-glucose-damaged (HGD) HT-22 hippocampal cells were enrolled to examine the effects of Ex-4 on AD-like changes in T2D. The Novel object recognition test (NORT) and Morris water maze test (MWMT) were conducted to evaluate the cognitive impairment. The Dickkopf-1 (DKK1) was employed to weaken the activation of the Wnt/β-catenin pathway to explore the mechanism of Ex-4 in protecting the brain functions. The JASPAR was based to predict the interaction between NeuroD1 and the promoter region of Ins2 . Moreover, the chromatin immunoprecipitation coupled with quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter assays were performed. Results  Ex-4 alleviated the tau hyperphosphorylation, increased the brain-derived insulin, and improved the PI3K/AKT/GSK3-β signalling in db/db mice, HF-diabetic mice, and HGD HT-22 hippocampal neuronal cells. The NORT and MWMT indicated that Ex-4 alleviated the learning and memory deficits in HF-diabetic mice. The inhibitor Dickkopf-1 (DKK1) of the Wnt/β-catenin pathway significantly blocked the protective effects of Ex-4. Regarding further molecular mechanisms, NeuroD1 was affected by Ex-4 in vivo and in vitro, and the knockdown or overexpression of NeuroD1 suggested its crucial role in promoting the brain insulin by Ex-4. Meanwhile, the ChIP‒qPCR and luciferase reporter assays confirmed the combination between NeuroD1 and the promoter region of the insulin-encoding gene  Ins2 . And this interaction could be promoted by Ex-4. Conclusions Our study proposes that Ex-4 alleviates tau hyperphosphorylation and cognitive dysfunction by increasing  Ins2 -derived brain insulin through the Wnt/β-catenin/NeuroD1 signaling in T2D. And its also show new lights on part of the progress and mechanism on treatment targets for the DE in T2D.
Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application. Graphical abstract
APPsα rescues CDK5 and GSK3β dysregulation and restores normal spine density in Tau transgenic mice
The Tau protein can be phosphorylated by numerous kinases. In Alzheimer’s disease (AD) hyperphosphorylated Tau species accumulate as neurofibrillary tangles that constitute a major hallmark of AD. AD is further characterized by extracellular Aβ plaques, derived from the β-amyloid precursor protein APP. Whereas Aβ is produced by amyloidogenic APP processing, APP processing along the competing non-amyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aβ-dependent impairments. Here, we examined the potential of APPsα to regulate two major Tau kinases, GSK3β and CDK5 in THY-Tau22 mice, a widely used mouse model of tauopathy. Immunohistochemistry revealed a dramatic increase in pathologically phosphorylated (AT8 and AT180) or misfolded Tau species (MC1) in the hippocampus of THY-Tau22 mice between 3 and 12 months of age. Using a highly sensitive radioactive kinase assay with recombinant human Tau as a substrate and immunoblotting, we demonstrate an increase in GSK3β and CDK5 activity in the hippocampus of THY-Tau22 mice. Interestingly, AAV-mediated intracranial expression of APPsα in THY-Tau22 mice efficiently restored normal GSK3β and CDK5 activity. Western blot analysis revealed upregulation of the CDK5 regulatory proteins p35 and p25, indicating CDK5 hyperactivation in THY-Tau22 mice. Strikingly, AAV-APPsα rescued p25 upregulation to wild-type levels even at stages of advanced Tau pathology. Sarkosyl fractionation used to study the abundance of soluble and insoluble phospho-Tau species revealed increased soluble AT8-Tau and decreased insoluble AT100-Tau species upon AAV-APPsα injection. Moreover, AAV-APPsα reduced misfolded (MC1) Tau species, particularly in somatodendritic compartments of CA1 pyramidal neurons. Finally, we show that AAV-APPsα upregulated PSD95 expression and rescued deficits in spine density of THY-Tau22 mice. Together our findings suggest that APPsα holds therapeutic potential to mitigate Tau-induced pathology.
1,8-Cineole Ameliorates Advanced Glycation End Products-Induced Alzheimer’s Disease-like Pathology In Vitro and In Vivo
Advanced glycation end products (AGEs) are stable products produced by the reaction of macromolecules such as proteins, lipids or nucleic acids with glucose or other reducing monosaccharides, which can be identified by immunohistochemistry in the senile plaques and neurofibrillary tangles of Alzheimer’s disease (AD) patients. Growing evidence suggests that AGEs are important risk factors for the development and progression of AD. 1,8-cineole (CIN) is a monoterpenoid compound which exists in many plant essential oils and has been proven to have neuroprotective activity, but its specific effect and molecular mechanisms are not clear. In this study, AGEs-induced neuronal injury and intracerebroventricular-AGE animals as the possible models for AD were employed to investigate the effects of CIN on AD pathology as well as the molecular mechanisms involved both in vivo and in vitro. Our study demonstrated that CIN could ameliorate tau phosphorylation by down-regulating the activity of GSK-3β and reducing Aβ production by inhibiting the activity of BACE-1 both in vivo and in vitro. It is suggested that CIN has certain therapeutic value in the treatment of AD.
Rapamycin Attenuated Zinc-Induced Tau Phosphorylation and Oxidative Stress in Rats: Involvement of Dual mTOR/p70S6K and Nrf2/HO-1 Pathways
Alzheimer’s disease is pathologically characterized by abnormal accumulation of amyloid-beta plaques, neurofibrillary tangles, oxidative stress, neuroinflammation, and neurodegeneration. Metal dysregulation, including excessive zinc released by presynaptic neurons, plays an important role in tau pathology and oxidase activation. The activities of mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (p70S6K) are elevated in the brains of patients with Alzheimer’s disease. Zinc induces tau hyperphosphorylation via mTOR/P70S6K activation in vitro . However, the involvement of the mTOR/P70S6K pathway in zinc-induced oxidative stress, tau degeneration, and synaptic and cognitive impairment has not been fully elucidated in vivo . Here, we assessed the effect of pathological zinc concentrations in SH-SY5Y cells by using biochemical assays and immunofluorescence staining. Rats (n = 18, male) were laterally ventricularly injected with zinc, treated with rapamycin (intraperitoneal injection) for 1 week, and assessed using the Morris water maze. Evaluation of oxidative stress, tau phosphorylation, and synaptic impairment was performed using the hippocampal tissue of the rats by biochemical assays and immunofluorescence staining. The results from the Morris water maze showed that the capacity of spatial memory was impaired in zinc-treated rats. Zinc sulfate significantly increased the levels of P-mTOR Ser2448, P-p70S6K Thr389, and P-tau Ser356 and decreased the levels of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in SH-SY5Y cells and in zinc-treated rats compared with the control groups. Increased expression of reactive oxygen species was observed in zinc sulfate-induced SH-SY5Y cells and in the hippocampus of zinc-injected rats. Rapamycin, an inhibitor of mTOR, rescued zinc-induced increases in mTOR/p70S6K activation, tau phosphorylation, and oxidative stress, and Nrf2/HO-1 inactivation, cognitive impairment, and synaptic impairment reduced the expression of synapse-related proteins in zinc-injected rats. In conclusion, our findings imply that rapamycin prevents zinc-induced cognitive impairment and protects neurons from tau pathology, oxidative stress, and synaptic impairment by decreasing mTOR/p70S6K hyperactivity and increasing Nrf2/HO-1 activity.
A new pathway for neuroprotection against tau hyperphosphorylation via δ-opioid receptor initiated inhibition of CDK5 and AMPK signaling
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by decreased memory and cognitive impairment. Abnormal tau hyperphosphorylation ultimately forms neurofibrillary tangles, which is one of the most important pathological features of AD. Since we have previously shown that the δ-opioid receptor (DOR) is neuroprotective in the brain, we asked if DOR plays any role in the control of tauopathy. In the PC12 cell model with okadaic acid-induced tau hyperphosphorylation, cell viability and cytotoxicity were evaluated by using CCK8 assay kit and lactate dehydrogenase cytotoxicity assay kit. The techniques of western blot and immunofluorescence were used to investigate the effect of DOR on tau hyperphosphorylation. We found that DOR activation inhibited okadaic acid-induced tau hyperphosphorylation in PC12 cells and attenuated the cell cycle reactivation and apoptosis. The DOR effect was blocked by Naltrindole, a DOR antagonist. Furthermore, the mechanistic studies showed that the DOR displayed its effect by reducing the expression of cyclin-dependent kinase (CDK) 5 and AMP-activated protein kinase (AMPK) in the model of tauopathy. Our novel findings suggest that DOR signaling may protect neurons from AD injury by inhibiting tau hyperphosphorylation.