Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
834 result(s) for "Telescopes Evaluation."
Sort by:
Astronomy with a Budget Telescope
In its Second Edition, this complete guide to buying and using a low-cost amateur astronomical telescope updates computer controls, digital cameras, dropping prices and rising quality of devices. Offers reviews and test reports on available budget telescopes.
Small Telescopes: Detectability and the Evaluation of Replication Results
This article introduces a new approach for evaluating replication results. It combines effect-size estimation with hypothesis testing, assessing the extent to which the replication results are consistent with an effect size big enough to have been detectable in the original study. The approach is demonstrated by examining replications of three well-known findings. Its benefits include the following: (a) differentiating \"unsuccessful\" replication attempts (i.e., studies yielding p > .05) that are too noisy from those that actively indicate the effect is undetectably different from zero, (b) \"protecting\" true findings from underpowered replications, and (c) arriving at intuitively compelling inferences in general and for the revisited replications in particular.
Candidate Sites for Millimeter and Submillimeter Ground-Based Telescopes: Atmospheric Rating for the Eurasian Submillimeter Telescopes Project
Modern sensing technologies used in the field of ground-based telescopes still present several challenges. First of all, these challenges are associated with the development of new-generation instruments for astronomical observations and with the influence of Earth’s atmosphere on radiation in various ranges of the electromagnetic spectrum. The atmosphere is often the main factor determining the technical characteristics of the instruments in both the optical and millimeter ranges. In particular, for millimeter/submillimeter telescopes, water vapor is the main gas that determines atmospheric opacity. The correct assessment of water vapor makes it possible to estimate the optical opacity of the atmosphere and, on this basis, the capabilities of the millimeter/submillimeter telescope and the limitations of its use in the mode of very long baseline interferometry. Many studies seek to effectively characterize water vapor content and dynamics for site-testing purposes regarding ground-based millimeter and submillimeter telescope application. In the present article, we study the water vapor content within a fairly large region, which has been poorly covered in the modern literature. Based on the ERA-5 reanalysis data as a site-testing-oriented tool, we obtained spatial distributions of the precipitable water vapor (PWV) within a large region (20∘N–70∘N, 35∘E–120∘E). These distributions of PWV were corrected with respect to the characteristic vertical scale of water vapor Heff and the relative height difference in the grid nodes in the ERA-5. The calculated values of PWV are highly correlated with the Global Navigation Satellite System-derived PWV, with Pearson coefficients greater than 0.9. Using the refined estimations, we determined the median values of atmospheric opacities corresponding to new prospective sites (Khulugaisha Peak and Tashanta) as well as the Special Astrophysical Observatory (the key astronomical observatory in Russia). Together with Ali in China, Khulugaisha Peak and Tashanta are considered by us as potential sites for the placement of a millimeter/submillimeter telescope within the framework of the project of the Eurasian Submillimeter Telescopes. The results obtained in this paper suggest promising atmospheric conditions for astronomic observations, at least in the millimeter range. In particular, we believe that this study will be a basis for the Eurasian Submillimeter Telescopes (ESMT) project, within the framework of which it is assumed to create a number of ground-based millimeter/submillimeter telescopes.
MISTRAL and its KIDs
The MIllimetric Sardinia radio Telescope Receiver based on Array of Lumped elements KIDs, MISTRAL, is a cryogenic W-band (77–103 GH) LEKID camera which will be integrated at the Gregorian focus of the 64 m aperture Sardinia Radio Telescope, in Italy, in Autumn 2022. This instrument, thanks to its high angular resolution ( ∼ 13 arcsec ) and the wide instantaneous field of view ( ∼ 4 arcmin ), will allow continuum surveys of the mm-wave sky with a variety of scientific targets, spanning from extragalactic astrophysics to solar system science. In this contribution, we will describe the design of the MISTRAL camera, with a particular focus on the optimisation and test of a prototype of the focal plane.
Small Aperture Telescopes for the Simons Observatory
The Simons Observatory (SO) is an upcoming cosmic microwave background(CMB) experiment located on Cerro Toco, Chile, that will map the microwave sky in temperature and polarization in six frequency bands spanning 27 to 285 GHz. SO will consist of one 6-meter Large Aperture Telescope (LAT) fielding∼30,000 detectors and an array of three 0.42-meter Small Aperture Telescopes (SATs) fielding an additional 30,000 detectors. This synergy will allow for the extremely sensitive characterization of the CMB over an-gular scales ranging from an arcmin to tens of degrees, enabling a wide range of scientific output. Here we focus on the SATs targeting degree angular scales with successive dichroic instruments observing at Mid-Frequency (MF: 93/145 GHz), Ultra-High-Frequency (UHF:225/285 GHz), and Low-Frequency (LF: 27/39 GHz). The three SATs will be able to map∼10% of the sky to a noise level of∼2 μK-arcmin when combining 93 and 145 GHz. The multiple frequency bands will allow the CMB to be separated from galactic foregrounds (primarily synchrotron and dust), with the primary science goal of characterizing the primordial tensor-to-scalar ratio, r, at a target level ofσ(r)≈0.003.
Pulse Tube Cooler with > 100 m Flexible Lines for Operation of Cryogenic Detector Arrays at Large Radiotelescopes
Large radio and mm–wave telescopes use very sensitive detectors requiring cryogenic cooling to reduce detector noise. Pulse Tubes (PT) cryocoolers are widely used to reach temperatures of a few K, defining the base temperature of further sub–K stages. This technology represents an effective solution for continuous operation, featuring high stability and reduced vibration levels on the detectors. However, the compressor used to operate the PT is a significant source of microphonics and electrical noise, making its use at the focus of large steerable telescopes not advisable. This calls for long flexible helium lines between the compressor, operated at the base of the radio telescope, and the cold–head, mounted in the receivers cabin with the receiver detectors. The distance between the receiver cabin and the base can be >100 m long for large radio telescopes. In the framework of our development of the MIllimetric Sardinia radio Telescope Receiver based on Array of Lumped elements kids (MISTRAL), a W–band camera working at the Gregorian focus of the 64 m aperture Sardinia Radio Telescope (SRT) with an array of Lumped Elements Kinetic Inductance Detectors (LEKID), we have developed a cryogenic system based on a PT refrigerator as the first cooling stage. Here we describe the MISTRAL cryogenic system and focus on the validation of the use of a commercial PT Cryocooler with 100 m helium lines running from the cold head to the compressor unit. The configuration allows us to operate the 0.9 W PT reaching below 4.2 K with 0.5 W dissipation.
LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
LiteBIRD is a candidate satellite for a strategic large mission of JAXA. With its expected launch in the middle of the 2020s with a H3 rocket, LiteBIRD plans to map the polarization of the cosmic microwave background radiation over the full sky with unprecedented precision. The full success of LiteBIRD is to achieve δ r < 0.001 , where δ r is the total error on the tensor-to-scalar ratio r . The required angular coverage corresponds to 2 ≤ ℓ ≤ 200 , where ℓ is the multipole moment. This allows us to test well-motivated cosmic inflation models. Full-sky surveys for 3 years at a Lagrangian point L2 will be carried out for 15 frequency bands between 34 and 448 GHz with two telescopes to achieve the total sensitivity of 2.5 μ K arcmin with a typical angular resolution of 0.5 ∘ at 150 GHz. Each telescope is equipped with a half-wave plate system for polarization signal modulation and a focal plane filled with polarization-sensitive TES bolometers. A cryogenic system provides a 100 mK base temperature for the focal planes and 2 K and 5 K stages for optical components.
Characterization of the Mid-Frequency Arrays for Advanced ACTPol
The Advanced ACTPol upgrade on the Atacama Cosmology Telescope aims to improve the measurement of the cosmic microwave background anisotropies and polarization, using four new dichroic detector arrays fabricated on 150-mm silicon wafers. These bolometric cameras use AlMn transition-edge sensors, coupled to feedhorns with orthomode transducers for polarization sensitivity. The first deployed camera is sensitive to both 150 and 230 GHz. Here, we present the laboratory characterization of the thermal parameters and optical efficiencies for the two newest fielded arrays, each sensitive to both 90 and 150 GHz. We provide assessments of the parameter uniformity across each array with evaluation of systematic uncertainties. Lastly, we show the arrays’ initial performance in the field.