Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,620 result(s) for "Telomere - metabolism"
Sort by:
Telomeres and telomerase: three decades of progress
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.In this Timeline article, Shay and Wright provide a historical account of progress in our understanding of telomeres (the ends of linear chromosomes) and telomerase (the primary enzyme that maintains and extends telomere lengths). Their perspective covers seminal moments from the early discoveries through to our latest understanding of the roles of telomeres and telomerase in ageing, diverse human diseases and gene regulation.
Structural biology of telomeres and telomerase
Telomeres are protein–DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein–DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein–protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein–protein interfaces within shelterin reveals a series of “domain–peptide” interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
POT1 loss-of-function variants predispose to familial melanoma
David Adams, Julia Newton-Bishop, Timothy Bishop, Nicholas Hayward and colleagues identify loss-of-function variants in POT1 in several families with early onset multiple primary melanoma. They further show that these variants disrupt telomere binding by POT1 and are associated with increased telomere length. Deleterious germline variants in CDKN2A account for around 40% of familial melanoma cases 1 , and rare variants in CDK4 , BRCA2 , BAP1 and the promoter of TERT have also been linked to the disease 2 , 3 , 4 , 5 . Here we set out to identify new high-penetrance susceptibility genes by sequencing 184 melanoma cases from 105 pedigrees recruited in the UK, The Netherlands and Australia that were negative for variants in known predisposition genes. We identified families where melanoma cosegregates with loss-of-function variants in the protection of telomeres 1 gene ( POT1 ), with a proportion of family members presenting with an early age of onset and multiple primary tumors. We show that these variants either affect POT1 mRNA splicing or alter key residues in the highly conserved oligonucleotide/oligosaccharide-binding (OB) domains of POT1, disrupting protein-telomere binding and leading to increased telomere length. These findings suggest that POT1 variants predispose to melanoma formation via a direct effect on telomeres.
The meiotic TERB1-TERB2-MAJIN complex tethers telomeres to the nuclear envelope
During meiotic prophase I, telomeres attach to and move on the nuclear envelope (NE), regulating chromosome movement to promote homologous pairing. Meiosis-specific proteins TERB1, TERB2 and MAJIN play a key role in this process. Here, we report the crystal structures of human TERB1-TERB2 and TERB2-MAJIN subcomplexes. Specific disruption of the TERB1-TERB2 or the TERB2-MAJIN interaction in the mouse Terb2 gene abolishes the telomere attachment to the NE and causes aberrant homologous pairing and disordered synapsis. In addition, depletion of SUN1 also partially disrupts the telomere-NE connection. We propose that the telomere-TRF1-TERB1-TERB2-MAJIN-NE interaction network and the telomere-LINC complex connection are likely two separate but cooperative pathways to stably recruit telomeres to the NE in meiosis prophase I. Our work provides a molecular model of the connection between telomeres and the NE and reveals the correlation between aberrant synapsis and the defective telomere attachment to the NE. The TERB1-TERB2-MAJIN complex mediates the attachment of telomeres to the nuclear envelope. Here the authors present the crystal structures of the human TERB1-TERB2 and TERB2-MAJIN subcomplexes and show that Terb2 mutations, which abolish complex formation cause aberrant homologous pairing and disordered synapsis in mouse.
Removal of Shelterin Reveals the Telomere End-Protection Problem
The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not previously observed upon deletion of individual shelterin proteins. The shelterin-free telomeres are processed by microhomology-mediated a Iter nati ve-NHEJ when Ku70/80 is absent and are attacked by nucleolytic degradation in the absence of 53BP1. The data establish that the end-protection problem is specified by six pathways [ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) signaling, classical-NHEJ, alt-NHEJ, homologous recombination, and resection] and show how shelterin acts with general DNA damage response factors to solve this problem.
53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in
In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair—which requires a 3′ overhang—and classical non-homologous end joining, which can join unresected ends 1 , 2 . BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1) 3 – 8 . When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7–SHLD1–SHLD2–SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors 4 , 6 – 9 . Here we address the mechanism by which 53BP1–RIF1–shieldin regulates the generation of recombinogenic 3′ overhangs. We report that CTC1–STN1–TEN1 (CST) 10 , a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)–primase 11 , is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST–Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin. 53BP1 and shieldin recruit the CTC1–STN1–TEN1 complex and polymerase-α to sites of DNA damage to help control the repair of double-strand breaks.
Structure of active human telomerase with telomere shelterin protein TPP1
Human telomerase is a RNA–protein complex that extends the 3′ end of linear chromosomes by synthesizing multiple copies of the telomeric repeat TTAGGG 1 . Its activity is a determinant of cancer progression, stem cell renewal and cellular aging 2 – 5 . Telomerase is recruited to telomeres and activated for telomere repeat synthesis by the telomere shelterin protein TPP1 6 , 7 . Human telomerase has a bilobal structure with a catalytic core ribonuclear protein and a H and ACA box ribonuclear protein 8 , 9 . Here we report cryo-electron microscopy structures of human telomerase catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER (also known as hTR)), and of telomerase with the shelterin protein TPP1. TPP1 forms a structured interface with the TERT-unique telomerase essential N-terminal domain (TEN) and the telomerase RAP motif (TRAP) that are unique to TERT, and conformational dynamics of TEN–TRAP are damped upon TPP1 binding, defining the requirements for recruitment and activation. The structures further reveal that the elements of TERT and TER that are involved in template and telomeric DNA handling—including the TEN domain and the TRAP–thumb helix channel—are largely structurally homologous to those in Tetrahymena telomerase 10 , and provide unique insights into the mechanism of telomerase activity. The binding site of the telomerase inhibitor BIBR1532 11 , 12 overlaps a critical interaction between the TER pseudoknot and the TERT thumb domain. Numerous mutations leading to telomeropathies 13 , 14 are located at the TERT–TER and TEN–TRAP–TPP1 interfaces, highlighting the importance of TER–TERT and TPP1 interactions for telomerase activity, recruitment and as drug targets. Cryo-electron microscopy structures of human telomerase and telomerase in complex with TPP1 provide insights into the interactions of these proteins and their activities.
MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection
MAD2L2 regulates DNA repair at deprotected telomeres and at ionizing-radiation-induced double-stranded DNA breaks by inhibiting resection of the 5′ ends; the ends are thus shunted into the non-homologous end-joining pathway. MAD2L2/REV7 promotes genome integrity DNA polymerase ζ, composed of REV3, REV7 and an associated factor, REV1, mediates a type of DNA repair involving translesion synthesis, and hence its activity is highly mutagenic. Two studies exploring the DNA damage response have converged on REV7 (also known as MAD2L2) as a factor that, by itself, can promote maintenance of genome integrity. Several protective mechanisms that prevent telomere ends being recognized as a double-strand breaks (DSBs) and triggering an inappropriate DNA damage response were known. Jacqueline Jacobs and colleagues now show that REV7/MAD2L2 suppresses homology-dependent repair at deprotected telomeres and at irradiation-induced DSBs by inhibiting resection of the 5′ end. As a consequence, the ends are shunted into the non-homologous end-joining pathway. Sven Rottenberg and colleagues came to a similar conclusion by studying the development of resistance to PARP inhibitors. They found that REV7/MAD2L2 dictates pathway choice in BRCA-deficient cells and during immunoglobulin class switching. Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are crucial to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and ageing 1 , 2 . Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped telomeres and promotes non-homologous end-joining (NHEJ)-mediated fusion of deprotected chromosome ends and genomic instability. MAD2L2 depletion causes elongated 3′ telomeric overhangs, indicating that MAD2L2 inhibits 5′ end resection. End resection blocks NHEJ while committing to homology-directed repair, and is under the control of 53BP1, RIF1 and PTIP 3 . Consistent with MAD2L2 promoting NHEJ-mediated telomere fusion by inhibiting 5′ end resection, knockdown of the nucleases CTIP or EXO1 partially restores telomere-driven genomic instability in MAD2L2-depleted cells. Control of DNA repair by MAD2L2 is not limited to telomeres. MAD2L2 also accumulates and inhibits end resection at irradiation-induced DNA double-strand breaks and promotes end-joining of DNA double-strand breaks in several settings, including during immunoglobulin class switch recombination. These activities of MAD2L2 depend on ATM kinase activity, RNF8, RNF168, 53BP1 and RIF1, but not on PTIP, REV1 and REV3, the latter two acting with MAD2L2 in translesion synthesis 4 . Together, our data establish MAD2L2 as a crucial contributor to the control of DNA repair activity by 53BP1 that promotes NHEJ by inhibiting 5′ end resection downstream of RIF1.
CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle
The protection of telomere ends by the shelterin complex prevents DNA damage signalling and promiscuous repair at chromosome ends. Evidence suggests that the 3′ single-stranded telomere end can assemble into a lasso-like t-loop configuration 1 , 2 , which has been proposed to safeguard chromosome ends from being recognized as DNA double-strand breaks 2 . Mechanisms must also exist to transiently disassemble t-loops to allow accurate telomere replication and to permit telomerase access to the 3′ end to solve the end-replication problem. However, the regulation and physiological importance of t-loops in the protection of telomere ends remains unknown. Here we identify a CDK phosphorylation site in the shelterin subunit at Ser365 of TRF2, whose dephosphorylation in S phase by the PP6R3 phosphatase provides a narrow window during which the RTEL1 helicase can transiently access and unwind t-loops to facilitate telomere replication. Re-phosphorylation of TRF2 at Ser365 outside of S phase is required to release RTEL1 from telomeres, which not only protects t-loops from promiscuous unwinding and inappropriate activation of ATM, but also counteracts replication conflicts at DNA secondary structures that arise within telomeres and across the genome. Hence, a phospho-switch in TRF2 coordinates the assembly and disassembly of t-loops during the cell cycle, which protects telomeres from replication stress and an unscheduled DNA damage response. A phospho-switch is identified in the shelterin subunit TRF2 that regulates transient recruitment of the RTEL1 helicase to, and release from, telomeres, and provides a narrow window during which RTEL1 can unwind t-loops to facilitate telomere replication.
CST–polymerase α-primase solves a second telomere end-replication problem
Telomerase adds G-rich telomeric repeats to the 3′ ends of telomeres 1 , counteracting telomere shortening caused by loss of telomeric 3′ overhangs during leading-strand DNA synthesis (‘the end-replication problem’ 2 ). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1–Stn1–Ten1 (CST–Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3′ overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST–Polα-primase lost 50–60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3′ overhangs through resection. The measured overall C-strand shortening in the absence of CST–Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5′ resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST–Polα-primase to maintain the C-strand. Incomplete duplication of the C-rich telomeric repeat strand by lagging-strand DNA synthesis is counteracted by DNA synthesis mediated by CST–polymerase α-primase.