Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,069
result(s) for
"Temozolomide"
Sort by:
Combined Lanreotide Autogel and Temozolomide Treatment of Progressive Pancreatic and Intestinal Neuroendocrine Tumors: The Phase II SONNET Study
2024
Background
In advanced neuroendocrine tumors (NET), antiproliferative treatment options beyond somatostatin analogs remain limited. Temozolomide (TMZ) has shown efficacy in NET alone or combined with other drugs.
Materials and Methods
SONNET (NCT02231762) was an open, multicenter, prospective, phase II study to evaluate lanreotide autogel 120 mg (LAN) plus TMZ in patients with progressive advanced/metastatic grade 1/2 gastroenteropancreatic (GEP) NET or of unknown primary. Patients could be enrolled at first-line or higher therapy line. The primary endpoint was disease control rate ([DCR], rate of stable disease [SD], partial [PR], and complete response [CR]) at 6 months of LAN and TMZ. Patients with nonfunctioning (NF) NET without progression at 6 months were randomized to 6-month LAN maintenance or watch and wait, patients with functioning (F)-NET with clinical benefit (PR, SD) continued on LAN.
Results
Fifty-seven patients were recruited. The majority of patients received the study drug at second or higher treatment line and had an NET G2. DCR at 6 months LAN and TMZ was 73.5%. After 6 months of further LAN maintenance, 54.5% of patients with F-NET and 71.4% with NF-NET had SD or PR vs 41.7% with NF-NET on observation only. LAN and TMZ were effective in all subgroups analyzed. At 12 months of follow-up, median progression-free survival was 11.1 months. Median serum chromogranin A decreased except in NF-NET on observation. O6-methylguanine DNA methyltransferase promoter methylation appeared to better reflect TMZ response than loss of gene expression. During combination therapy, the most frequent treatment-emergent adverse events grade 3/4 reported were nausea (14%), thrombocytopenia (12.3%), and neutropenia (8.8%). Four deaths were reported resulting from severe adverse events not considered related to study medication.
Conclusions
LAN plus TMZ is a treatment option for patients with progressive GEP-NET with more aggressive biological profile showing a manageable safety profile.
Drugs that control tumor growth and/or inhibit hormone release are a mainstay of management of neuroendocrine tumors. This study investigated the combined treatment with lanreotide, a drug derived from the naturally occurring inhibitory hormone somatostatin, and the chemotherapeutic agent temozolomide.
Journal Article
Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): a randomised controlled phase 2 EORTC trial
by
Mulholland, Paul J
,
Taphoorn, Martin J B
,
Idbaih, Ahmed
in
Adult
,
Angiogenesis
,
Antineoplastic Agents, Alkylating - administration & dosage
2018
Bevacizumab is frequently used in the treatment of recurrent WHO grade II and III glioma, but without supporting evidence from randomised trials. Therefore, we assessed the use of bevacizumab in patients with first recurrence of grade II or III glioma who did not have 1p/19q co-deletion.
The TAVAREC trial was a randomised, open-label phase 2 trial done at 32 centres across Europe in patients with locally diagnosed grade II or III glioma without 1p/19q co-deletion, with a first and contrast-enhancing recurrence after initial radiotherapy or chemotherapy, or both. Previous chemotherapy must have been stopped at least 6 months before enrolment and radiotherapy must have been stopped at least 3 months before enrolment. Random group assignment was done electronically through the European Organisation for Research and Treatment of Cancer web-based system, stratified by a minimisation procedure using institution, initial histology (WHO grade II vs III), WHO performance status (0 or 1 vs 2), and previous treatment (radiotherapy, chemotherapy, or both). Patients were assigned to receive either temozolomide (150–200 mg/m2, orally) monotherapy on days 1–5 every 4 weeks for a maximum of 12 cycles, or the same temozolomide regimen in combination with bevacizumab (10 mg/kg, intravenously) every 2 weeks until progression. The primary endpoint was overall survival at 12 months in the per-protocol population. Safety analyses were done in all patients who started their allocated treatment. The study is registered at EudraCT (2009–017422–39) and ClinicalTrials.gov (NCT01164189), and is complete.
Between Feb 8, 2011, and July 31, 2015, 155 patients were enrolled and randomly assigned to receive either monotherapy (n=77) or combination therapy (n=78). Overall survival in the per-protocol population at 12 months was achieved by 44 (61% [80% CI 53–69]) of 72 patients in the temozolomide group and 38 (55% [47–69]) of 69 in the combination group. The most frequent toxicity was haematological: 17 (23%) of 75 patients in the monotherapy group and 25 (33%) of 76 in the combination group developed grade 3 or 4 haematological toxicity. Other than haematological toxicities, the most common adverse events were nervous system disorders (59 [79%] of 75 patients in the monotherapy group vs 65 [86%] of 76 in the combination group), fatigue (53 [70%] vs 61 [80%]), and nausea (39 [52%] vs 43 [56%]). Infections were more frequently reported in the combination group (29 [38%] of 76 patients) than in the monotherapy group (17 [23%] of 75). One treatment-related death was reported in the combination group (infection after intratumoral haemorrhage during a treatment-related grade 4 thrombocytopenia).
We found no evidence of improved overall survival with bevacizumab and temozolomide combination treatment versus temozolomide monotherapy. The findings from this study provide no support for further phase 3 studies on the role of bevacizumab in this disease.
Roche Pharmaceuticals.
Journal Article
A Novel Squalenoylated Temozolomide Nanoparticle with Long Circulating Properties Reverses Drug Resistance in Glioblastoma
by
Wen, Chengyong
,
Zhang, Xiao
,
Sui, Xinbing
in
Animals
,
Antineoplastic Agents, Alkylating - chemistry
,
Antineoplastic Agents, Alkylating - pharmacology
2025
Temozolomide (TMZ) remains the frontline chemotherapy for gliomas; yet its clinical efficacy is significantly compromised by inherent instability and the emergence of resistance mechanisms. To surmount these challenges, we engineered a squalenoylated TMZ nanoparticle (SQ-TMZ NPs) via conjugation of TMZ with squalene, enabling enhanced drug stability and improved therapeutic potency against glioblastoma cells. The resulting SQ-TMZ NPs exhibited a precisely controlled nanoscale architecture (~126 nm), demonstrating exceptional stability under physiological and storage conditions, with minimal hemolytic toxicity (<5%). Notably, these nanoparticles conferred superior cytotoxicity in TMZ-resistant glioblastoma T98G cells, attributed to the amplification of intracellular reactive oxygen species (ROS) and DNA damage, along with MGMT (O-6-methylguanine-DNA methyltransferase) expression suppression. Furthermore, in vivo imaging confirmed their efficient blood–brain barrier (BBB) penetration and selective tumor accumulation. This study presents a transformative approach by integrating prodrug self-assembly with targeted drug delivery to not only enhance TMZ stability but also decisively reverse glioblastoma resistance, offering a compelling therapeutic advancement.
Journal Article
A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma
2021
Background
Preclinical data suggest some cannabinoids may exert antitumour effects against glioblastoma (GBM). Safety and preliminary efficacy of nabiximols oromucosal cannabinoid spray plus dose-intense temozolomide (DIT) was evaluated in patients with first recurrence of GBM.
Methods
Part 1 was open-label and Part 2 was randomised, double-blind, and placebo-controlled. Both required individualised dose escalation. Patients received nabiximols (Part 1,
n
= 6; Part 2,
n
= 12) or placebo (Part 2 only,
n
= 9); maximum of 12 sprays/day with DIT for up to 12 months. Safety, efficacy, and temozolomide (TMZ) pharmacokinetics (PK) were monitored.
Results
The most common treatment-emergent adverse events (TEAEs; both parts) were vomiting, dizziness, fatigue, nausea and headache. Most patients experienced TEAEs that were grade 2 or 3 (CTCAE). In Part 2, 33% of both nabiximols- and placebo-treated patients were progression-free at 6 months. Survival at 1 year was 83% for nabiximols- and 44% for placebo-treated patients (
p
= 0.042), although two patients died within the first 40 days of enrolment in the placebo arm. There were no apparent effects of nabiximols on TMZ PK.
Conclusions
With personalised dosing, nabiximols had acceptable safety and tolerability with no drug–drug interaction identified. The observed survival differences support further exploration in an adequately powered randomised controlled trial.
Clinical trial registration
ClinicalTrials.gov: Part 1– NCT01812603; Part 2– NCT01812616.
Journal Article
Antisecretory factor as add-on treatment for newly diagnosed glioblastoma, IDH wildtype: study protocol for a randomized double-blind placebo-controlled trial
by
Siesjö, Peter
,
Kinhult, Sara
,
Darabi, Anna
in
Adults
,
Angiogenesis
,
Antineoplastic Agents, Alkylating - administration & dosage
2025
Background
Glioblastoma, IDH wildtype is the most common primary malignant brain tumor in adults. Despite best available treatment, prognosis remains poor. Current standard therapy consists of surgical tumor removal followed by radiotherapy and chemotherapy with the alkylating agent temozolomide. Antisecretory factor (AF), an endogenous protein, may potentiate the effect of temozolomide and alleviate cerebral edema. Salovum® is an egg-yolk powder enriched for AF and is classified as a medical food in the European Union. Salovum® has shown preliminary clinical effect on glioblastoma in a recent pilot study. Here, we aim to assess if add-on Salovum® to temozolomide therapy can improve outcomes in patients with newly diagnosed glioblastoma.
Methods
This is a multi-center, double-blinded, randomized, placebo-controlled phase II-III clinical trial to investigate superiority of Salovum® over placebo as add-on treatment for glioblastoma during concomitant and adjuvant temozolomide therapy. Patients with newly diagnosed glioblastoma that are planned for temozolomide treatment are screened for eligibility and randomized to receive Salovum® (
n
= 150) or placebo (
n
= 150). An interim analysis will be performed after 80 included patients to guide whether to continue or terminate. Primary endpoint is 12-month overall survival. Secondary outcome is 24-month overall survival.
Discussion
This study will likely produce high-grade evidence to support or reject Salovum® as add-on treatment for glioblastoma.
Trial registration
ClinicalTrials.gov
NCT05669820
. Registered on January 3, 2023.
Journal Article
Irinotecan and temozolomide in combination with dasatinib and rapamycin versus irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma (RIST-rNB-2011): a multicentre, open-label, randomised, controlled, phase 2 trial
by
Suttorp, Meinolf
,
Schlegel, Paul-Gerhardt
,
Riemenschneider, Markus J
in
Adolescent
,
Adult
,
Adverse events
2024
Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan–temozolomide and dasatinib–rapamycin (RIST) in patients with relapsed or refractory neuroblastoma.
The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1–25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan–temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2–4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin–dasatinib and irinotecan–temozolomide for four cycles over 8 weeks, then two courses of rapamycin–dasatinib followed by one course of irinotecan–temozolomide for 12 weeks) with irinotecan–temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual.
Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7–8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31–88), the median progression-free survival was 11 months (95% CI 7–17) in the RIST group and 5 months (2–8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4–24) in the RIST group versus 2 months (2–5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9–7) in the RIST group versus 8 months (4–15) in the control group (HR 0·84 [95% CI 0·51–1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure).
RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting.
Deutsche Krebshilfe.
Journal Article
Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA–09): a randomised, open-label, phase 3 trial
by
Schnell, Oliver
,
Goldbrunner, Roland
,
Stummer, Walter
in
Adult
,
Aged
,
Antineoplastic Agents, Alkylating - therapeutic use
2019
There is an urgent need for more effective therapies for glioblastoma. Data from a previous unrandomised phase 2 trial suggested that lomustine-temozolomide plus radiotherapy might be superior to temozolomide chemoradiotherapy in newly diagnosed glioblastoma with methylation of the MGMT promoter. In the CeTeG/NOA-09 trial, we aimed to further investigate the effect of lomustine-temozolomide therapy in the setting of a randomised phase 3 trial.
In this open-label, randomised, phase 3 trial, we enrolled patients from 17 German university hospitals who were aged 18–70 years, with newly diagnosed glioblastoma with methylated MGMT promoter, and a Karnofsky Performance Score of 70% and higher. Patients were randomly assigned (1:1) with a predefined SAS-generated randomisation list to standard temozolomide chemoradiotherapy (75 mg/m2 per day concomitant to radiotherapy [59–60 Gy] followed by six courses of temozolomide 150–200 mg/m2 per day on the first 5 days of the 4-week course) or to up to six courses of lomustine (100 mg/m2 on day 1) plus temozolomide (100–200 mg/m2 per day on days 2–6 of the 6-week course) in addition to radiotherapy (59–60 Gy). Because of the different schedules, patients and physicians were not masked to treatment groups. The primary endpoint was overall survival in the modified intention-to-treat population, comprising all randomly assigned patients who started their allocated chemotherapy. The prespecified test for overall survival differences was a log-rank test stratified for centre and recursive partitioning analysis class. The trial is registered with ClinicalTrials.gov, number NCT01149109.
Between June 17, 2011, and April 8, 2014, 141 patients were randomly assigned to the treatment groups; 129 patients (63 in the temozolomide and 66 in the lomustine-temozolomide group) constituted the modified intention-to-treat population. Median overall survival was improved from 31·4 months (95% CI 27·7–47·1) with temozolomide to 48·1 months (32·6 months–not assessable) with lomustine-temozolomide (hazard ratio [HR] 0·60, 95% CI 0·35–1·03; p=0·0492 for log-rank analysis). A significant overall survival difference between groups was also found in a secondary analysis of the intention-to-treat population (n=141, HR 0·60, 95% CI 0·35–1·03; p=0·0432 for log-rank analysis). Adverse events of grade 3 or higher were observed in 32 (51%) of 63 patients in the temozolomide group and 39 (59%) of 66 patients in the lomustine-temozolomide group. There were no treatment-related deaths.
Our results suggest that lomustine-temozolomide chemotherapy might improve survival compared with temozolomide standard therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. The findings should be interpreted with caution, owing to the small size of the trial.
German Federal Ministry of Education and Research.
Journal Article
Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study
2021
The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear.
This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0–2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150–200 mg/m2 temozolomide given on days 1–5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990.
Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0–77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7–82·3] with concurrent temozolomide vs 60·4 months [45·7–71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73–1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2–116·6] vs 46·9 months [37·9–56·9]; HR 0·64 [95% CI 0·52–0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported.
Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status.
Merck Sharpe & Dohme.
Journal Article
Mechanisms and therapeutic implications of hypermutation in gliomas
2020
A high tumour mutational burden (hypermutation) is observed in some gliomas
1
–
5
; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.
Temozolomide therapy seems to lead to mismatch repair deficiency and hypermutation in gliomas, but not to an increase in response to immunotherapy.
Journal Article