Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
726
result(s) for
"Temozolomide - administration "
Sort by:
Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA–09): a randomised, open-label, phase 3 trial
by
Schnell, Oliver
,
Goldbrunner, Roland
,
Stummer, Walter
in
Adult
,
Aged
,
Antineoplastic Agents, Alkylating - therapeutic use
2019
There is an urgent need for more effective therapies for glioblastoma. Data from a previous unrandomised phase 2 trial suggested that lomustine-temozolomide plus radiotherapy might be superior to temozolomide chemoradiotherapy in newly diagnosed glioblastoma with methylation of the MGMT promoter. In the CeTeG/NOA-09 trial, we aimed to further investigate the effect of lomustine-temozolomide therapy in the setting of a randomised phase 3 trial.
In this open-label, randomised, phase 3 trial, we enrolled patients from 17 German university hospitals who were aged 18–70 years, with newly diagnosed glioblastoma with methylated MGMT promoter, and a Karnofsky Performance Score of 70% and higher. Patients were randomly assigned (1:1) with a predefined SAS-generated randomisation list to standard temozolomide chemoradiotherapy (75 mg/m2 per day concomitant to radiotherapy [59–60 Gy] followed by six courses of temozolomide 150–200 mg/m2 per day on the first 5 days of the 4-week course) or to up to six courses of lomustine (100 mg/m2 on day 1) plus temozolomide (100–200 mg/m2 per day on days 2–6 of the 6-week course) in addition to radiotherapy (59–60 Gy). Because of the different schedules, patients and physicians were not masked to treatment groups. The primary endpoint was overall survival in the modified intention-to-treat population, comprising all randomly assigned patients who started their allocated chemotherapy. The prespecified test for overall survival differences was a log-rank test stratified for centre and recursive partitioning analysis class. The trial is registered with ClinicalTrials.gov, number NCT01149109.
Between June 17, 2011, and April 8, 2014, 141 patients were randomly assigned to the treatment groups; 129 patients (63 in the temozolomide and 66 in the lomustine-temozolomide group) constituted the modified intention-to-treat population. Median overall survival was improved from 31·4 months (95% CI 27·7–47·1) with temozolomide to 48·1 months (32·6 months–not assessable) with lomustine-temozolomide (hazard ratio [HR] 0·60, 95% CI 0·35–1·03; p=0·0492 for log-rank analysis). A significant overall survival difference between groups was also found in a secondary analysis of the intention-to-treat population (n=141, HR 0·60, 95% CI 0·35–1·03; p=0·0432 for log-rank analysis). Adverse events of grade 3 or higher were observed in 32 (51%) of 63 patients in the temozolomide group and 39 (59%) of 66 patients in the lomustine-temozolomide group. There were no treatment-related deaths.
Our results suggest that lomustine-temozolomide chemotherapy might improve survival compared with temozolomide standard therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. The findings should be interpreted with caution, owing to the small size of the trial.
German Federal Ministry of Education and Research.
Journal Article
Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study
2021
The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear.
This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0–2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150–200 mg/m2 temozolomide given on days 1–5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990.
Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0–77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7–82·3] with concurrent temozolomide vs 60·4 months [45·7–71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73–1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2–116·6] vs 46·9 months [37·9–56·9]; HR 0·64 [95% CI 0·52–0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported.
Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status.
Merck Sharpe & Dohme.
Journal Article
Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): a randomised controlled phase 2 EORTC trial
by
Mulholland, Paul J
,
Taphoorn, Martin J B
,
Idbaih, Ahmed
in
Adult
,
Angiogenesis
,
Antineoplastic Agents, Alkylating - administration & dosage
2018
Bevacizumab is frequently used in the treatment of recurrent WHO grade II and III glioma, but without supporting evidence from randomised trials. Therefore, we assessed the use of bevacizumab in patients with first recurrence of grade II or III glioma who did not have 1p/19q co-deletion.
The TAVAREC trial was a randomised, open-label phase 2 trial done at 32 centres across Europe in patients with locally diagnosed grade II or III glioma without 1p/19q co-deletion, with a first and contrast-enhancing recurrence after initial radiotherapy or chemotherapy, or both. Previous chemotherapy must have been stopped at least 6 months before enrolment and radiotherapy must have been stopped at least 3 months before enrolment. Random group assignment was done electronically through the European Organisation for Research and Treatment of Cancer web-based system, stratified by a minimisation procedure using institution, initial histology (WHO grade II vs III), WHO performance status (0 or 1 vs 2), and previous treatment (radiotherapy, chemotherapy, or both). Patients were assigned to receive either temozolomide (150–200 mg/m2, orally) monotherapy on days 1–5 every 4 weeks for a maximum of 12 cycles, or the same temozolomide regimen in combination with bevacizumab (10 mg/kg, intravenously) every 2 weeks until progression. The primary endpoint was overall survival at 12 months in the per-protocol population. Safety analyses were done in all patients who started their allocated treatment. The study is registered at EudraCT (2009–017422–39) and ClinicalTrials.gov (NCT01164189), and is complete.
Between Feb 8, 2011, and July 31, 2015, 155 patients were enrolled and randomly assigned to receive either monotherapy (n=77) or combination therapy (n=78). Overall survival in the per-protocol population at 12 months was achieved by 44 (61% [80% CI 53–69]) of 72 patients in the temozolomide group and 38 (55% [47–69]) of 69 in the combination group. The most frequent toxicity was haematological: 17 (23%) of 75 patients in the monotherapy group and 25 (33%) of 76 in the combination group developed grade 3 or 4 haematological toxicity. Other than haematological toxicities, the most common adverse events were nervous system disorders (59 [79%] of 75 patients in the monotherapy group vs 65 [86%] of 76 in the combination group), fatigue (53 [70%] vs 61 [80%]), and nausea (39 [52%] vs 43 [56%]). Infections were more frequently reported in the combination group (29 [38%] of 76 patients) than in the monotherapy group (17 [23%] of 75). One treatment-related death was reported in the combination group (infection after intratumoral haemorrhage during a treatment-related grade 4 thrombocytopenia).
We found no evidence of improved overall survival with bevacizumab and temozolomide combination treatment versus temozolomide monotherapy. The findings from this study provide no support for further phase 3 studies on the role of bevacizumab in this disease.
Roche Pharmaceuticals.
Journal Article
Irinotecan and temozolomide in combination with dasatinib and rapamycin versus irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma (RIST-rNB-2011): a multicentre, open-label, randomised, controlled, phase 2 trial
by
Suttorp, Meinolf
,
Schlegel, Paul-Gerhardt
,
Riemenschneider, Markus J
in
Adolescent
,
Adult
,
Adverse events
2024
Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan–temozolomide and dasatinib–rapamycin (RIST) in patients with relapsed or refractory neuroblastoma.
The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1–25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan–temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2–4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin–dasatinib and irinotecan–temozolomide for four cycles over 8 weeks, then two courses of rapamycin–dasatinib followed by one course of irinotecan–temozolomide for 12 weeks) with irinotecan–temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual.
Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7–8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31–88), the median progression-free survival was 11 months (95% CI 7–17) in the RIST group and 5 months (2–8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4–24) in the RIST group versus 2 months (2–5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9–7) in the RIST group versus 8 months (4–15) in the control group (HR 0·84 [95% CI 0·51–1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure).
RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting.
Deutsche Krebshilfe.
Journal Article
Combined Lanreotide Autogel and Temozolomide Treatment of Progressive Pancreatic and Intestinal Neuroendocrine Tumors: The Phase II SONNET Study
2024
Background
In advanced neuroendocrine tumors (NET), antiproliferative treatment options beyond somatostatin analogs remain limited. Temozolomide (TMZ) has shown efficacy in NET alone or combined with other drugs.
Materials and Methods
SONNET (NCT02231762) was an open, multicenter, prospective, phase II study to evaluate lanreotide autogel 120 mg (LAN) plus TMZ in patients with progressive advanced/metastatic grade 1/2 gastroenteropancreatic (GEP) NET or of unknown primary. Patients could be enrolled at first-line or higher therapy line. The primary endpoint was disease control rate ([DCR], rate of stable disease [SD], partial [PR], and complete response [CR]) at 6 months of LAN and TMZ. Patients with nonfunctioning (NF) NET without progression at 6 months were randomized to 6-month LAN maintenance or watch and wait, patients with functioning (F)-NET with clinical benefit (PR, SD) continued on LAN.
Results
Fifty-seven patients were recruited. The majority of patients received the study drug at second or higher treatment line and had an NET G2. DCR at 6 months LAN and TMZ was 73.5%. After 6 months of further LAN maintenance, 54.5% of patients with F-NET and 71.4% with NF-NET had SD or PR vs 41.7% with NF-NET on observation only. LAN and TMZ were effective in all subgroups analyzed. At 12 months of follow-up, median progression-free survival was 11.1 months. Median serum chromogranin A decreased except in NF-NET on observation. O6-methylguanine DNA methyltransferase promoter methylation appeared to better reflect TMZ response than loss of gene expression. During combination therapy, the most frequent treatment-emergent adverse events grade 3/4 reported were nausea (14%), thrombocytopenia (12.3%), and neutropenia (8.8%). Four deaths were reported resulting from severe adverse events not considered related to study medication.
Conclusions
LAN plus TMZ is a treatment option for patients with progressive GEP-NET with more aggressive biological profile showing a manageable safety profile.
Drugs that control tumor growth and/or inhibit hormone release are a mainstay of management of neuroendocrine tumors. This study investigated the combined treatment with lanreotide, a drug derived from the naturally occurring inhibitory hormone somatostatin, and the chemotherapeutic agent temozolomide.
Journal Article
A phase II open label, randomised study of ipilimumab with temozolomide versus temozolomide alone after surgery and chemoradiotherapy in patients with recently diagnosed glioblastoma: the Ipi-Glio trial protocol
2020
Background
Median survival for patients with glioblastoma is less than a year. Standard treatment consists of surgical debulking if feasible followed by temozolomide chemo-radiotherapy. The immune checkpoint inhibitor ipilimumab targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and has shown clinical efficacy in preclinical models of glioblastoma. The aim of this study is to explore the addition of ipilimumab to standard therapy in patients with glioblastoma.
Methods/design
Ipi-Glio is a phase II, open label, randomised study of ipilimumab with temozolomide (Arm A) versus temozolomide alone (Arm B) after surgery and chemoradiotherapy in patients with recently diagnosed glioblastoma. Planned accrual is 120 patients (Arm A: 80, Arm B: 40). Endpoints include overall survival, 18-month survival, 5-year survival, and adverse events. The trial is currently recruiting in seven centres in the United Kingdom.
Trial registration
ISRCTN84434175
. Registered 12 November 2018.
Journal Article
Safety and efficacy of depatuxizumab mafodotin in Japanese patients with malignant glioma: A nonrandomized, phase 1/2 trial
2021
INTELLANCE‐J was a phase 1/2 study of a potent antibody‐drug conjugate targeting epidermal growth factor receptor (EGFR), depatuxizumab mafodotin (Depatux‐M), as a second‐ or first‐line therapy, alone or combined with chemotherapy or chemoradiotherapy in 53 Japanese patients with World Health Organization (WHO) grade III/IV glioma. In second‐line arms, patients with EGFR‐amplified recurrent WHO grade III/IV glioma received Depatux‐M plus chemotherapy (temozolomide) or Depatux‐M alone regardless of EGFR status. In first‐line arms, patients with newly diagnosed WHO grade III/IV glioma received Depatux‐M plus chemoradiotherapy. The study was halted following lack of survival benefit with first‐line Depatux‐M in the global trial INTELLANCE‐1. The primary endpoint was 6‐month progression‐free survival (PFS) in patients with EGFR‐amplified tumors receiving second‐line Depatux‐M plus chemotherapy. Common nonocular treatment‐emergent adverse events (TEAEs) with both second‐line and first‐line Depatux‐M included lymphopenia (42%, 33%, respectively), thrombocytopenia (39%, 47%), alanine aminotransferase increase (29%, 47%), and aspartate aminotransferase increase (24%, 60%); incidence of grade ≥3 TEAEs was 66% and 53%, respectively. Ocular side effects (OSEs) occurred in 93% of patients receiving second‐line Depatux‐M plus chemotherapy and all patients receiving second‐line Depatux‐M alone or first‐line Depatux‐M plus chemoradiotherapy. Most OSEs were manageable with dose modifications and concomitant medications. The 6‐month PFS estimate was 25.6% (95% confidence interval [CI] 11.4‒42.6), and median PFS was 2.1 months (95% CI 1.9‒3.9) with second‐line Depatux‐M plus chemotherapy in the EGFR‐amplified subgroup. This study showed acceptable safety profile of Depatux‐M alone or plus chemotherapy/chemoradiotherapy in Japanese patients with WHO grade III/IV glioma. The study was registered at ClinicalTrials.gov (NCT02590263). INTELLANCE‐J was a phase 1/2 study of a potent antibody‐drug conjugate targeting epidermal growth factor receptor (EGFR), depatuxizumab mafodotin, as a second‐ or first‐line therapy, alone or combined with chemotherapy or chemoradiotherapy in Japanese patients with World Health Organization grade III/IV glioma. The results of this trial demonstrate an acceptable safety profile of depatuxizumab mafodotin, with ocular side effects being the most common adverse events that were mostly reversible. Second‐line depatuxizumab mafodotin in combination with temozolomide resulted in a 6‐month progression‐free survival estimate of 25.6% (95% confidence interval 11.4‒42.6) in patients with EGFR‐amplified tumors and showed encouraging antitumor activity in this subgroup of patients (NCT02590263).
Journal Article
Antisecretory factor as add-on treatment for newly diagnosed glioblastoma, IDH wildtype: study protocol for a randomized double-blind placebo-controlled trial
by
Siesjö, Peter
,
Kinhult, Sara
,
Darabi, Anna
in
Adults
,
Angiogenesis
,
Antineoplastic Agents, Alkylating - administration & dosage
2025
Background
Glioblastoma, IDH wildtype is the most common primary malignant brain tumor in adults. Despite best available treatment, prognosis remains poor. Current standard therapy consists of surgical tumor removal followed by radiotherapy and chemotherapy with the alkylating agent temozolomide. Antisecretory factor (AF), an endogenous protein, may potentiate the effect of temozolomide and alleviate cerebral edema. Salovum® is an egg-yolk powder enriched for AF and is classified as a medical food in the European Union. Salovum® has shown preliminary clinical effect on glioblastoma in a recent pilot study. Here, we aim to assess if add-on Salovum® to temozolomide therapy can improve outcomes in patients with newly diagnosed glioblastoma.
Methods
This is a multi-center, double-blinded, randomized, placebo-controlled phase II-III clinical trial to investigate superiority of Salovum® over placebo as add-on treatment for glioblastoma during concomitant and adjuvant temozolomide therapy. Patients with newly diagnosed glioblastoma that are planned for temozolomide treatment are screened for eligibility and randomized to receive Salovum® (
n
= 150) or placebo (
n
= 150). An interim analysis will be performed after 80 included patients to guide whether to continue or terminate. Primary endpoint is 12-month overall survival. Secondary outcome is 24-month overall survival.
Discussion
This study will likely produce high-grade evidence to support or reject Salovum® as add-on treatment for glioblastoma.
Trial registration
ClinicalTrials.gov
NCT05669820
. Registered on January 3, 2023.
Journal Article
A randomized phase III study of short-course radiotherapy combined with Temozolomide in elderly patients with newly diagnosed glioblastoma; Japan clinical oncology group study JCOG1910 (AgedGlio-PIII)
by
Sasaki, Keita
,
Sekino, Yuta
,
Ono, Tomohiro
in
Activities of daily living
,
Adverse events
,
Aged
2021
Background
The current standard treatment for elderly patients with newly diagnosed glioblastoma is surgery followed by short-course radiotherapy with temozolomide. In recent studies, 40 Gy in 15 fractions vs. 60 Gy in 30 fractions, 34 Gy in 10 fractions vs. 60 Gy in 30 fractions, and 40 Gy in 15 fractions vs. 25 Gy in 5 fractions have been reported as non-inferior. The addition of temozolomide increased the survival benefit of radiotherapy with 40 Gy in 15 fractions. However, the optimal regimen for radiotherapy plus concomitant temozolomide remains unresolved.
Methods
This multi-institutional randomized phase III trial was commenced to confirm the non-inferiority of radiotherapy comprising 25 Gy in 5 fractions with concomitant (150 mg/m
2
/day, 5 days) and adjuvant temozolomide over 40 Gy in 15 fractions with concomitant (75 mg/m
2
/day, every day from first to last day of radiation) and adjuvant temozolomide in terms of overall survival (OS) in elderly patients with newly diagnosed glioblastoma. A total of 270 patients will be accrued from 51 Japanese institutions in 4 years and follow-up will last 2 years. Patients 71 years of age or older, or 71–75 years old with resection of less than 90% of the contrast-enhanced region, will be registered and randomly assigned to each group with 1:1 allocation. The primary endpoint is OS, and the secondary endpoints are progression-free survival, frequency of adverse events, proportion of Karnofsky performance status preservation, and proportion of health-related quality of life preservation. The Japan Clinical Oncology Group Protocol Review Committee approved this study protocol in April 2020. Ethics approval was granted by the National Cancer Center Hospital Certified Review Board. Patient enrollment began in August 2020.
Discussion
If the primary endpoint is met, short-course radiotherapy comprising 25 Gy in 5 fractions with concomitant and adjuvant temozolomide will be a standard of care for elderly patients with newly diagnosed glioblastoma.
Trial registration
Registry number:
jRCTs031200099
.
Date of Registration: 27/Aug/2020. Date of First Participant Enrollment: 4/Sep/2020.
Journal Article
Clinical Efficacy of Bevacizumab Combined with Temozolomide in Treating Gliomas
by
Li, Qiang
,
Qi, Aihong
,
Li, Puxian
in
Adult
,
Aged
,
Antineoplastic Agents, Alkylating - therapeutic use
2025
To examine the clinical efficacy of bevacizumab (BEV) combined with temozolomide (TMZ) as a treatment for patients with recurrent malignant gliomas.
50 patients with recurrent malignant gliomas treated at our hospital between January 2019 and January 2022 were enrolled and randomized to the control group and combine group using a random table method, with 25 cases in each group. The control group received TMZ and the combine group received BEV plus TMZ. The disease control rate (DCR), the quality-of-life score before and after treatment, and the median 6-month progression-free survival (PFS) rate as well as adverse reactions were recorded and compared.
There was a significant difference in DCR between the combine group (80%) and the control group (52%) (χ2 = 5.556, P = .018). In each of the quality-of-life scales, the scores of the combine group were significantly greater than those of the control group after treatment, and the difference was statistically significant (P < .05). In the control group, the median PFS was 16.2 weeks, and the six-month PFS was 19.8%. However, in the combine group, the median PFS was 21.9 weeks, and the six-month PFS was 43.1% (P < .05). Comparing the two groups, the rate of adverse reactions in the control group was significantly higher (44.0% vs 12.0%) (χ2 = 6.349, P = .012).
BEV plus TMZ is remarkable in the treatment of patients with recurrent malignant gliomas. The combination treatment improves the DCR and PFS of patients and their quality of life, and does not increase adverse reactions, making it a promising approach that deserves widespread promotion and clinical application.
Journal Article