Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
424 result(s) for "Teriparatide - therapeutic use"
Sort by:
Recommendations for the optimal use of bone forming agents in osteoporosis
Bone forming agents, also known as anabolic therapies, are essential in managing osteoporosis, particularly for patients at very high-risk of fractures. Identifying candidates who will benefit the most from these treatments is crucial. For example, this group might include individuals with severe osteoporosis, multiple vertebral fractures, a recent fragility fracture or those unresponsive to antiresorptive treatments. Definitions of patients with a very high fracture risk vary across nations, are often based on fracture history, bone mineral density (BMD), and/or fracture risk calculated by FRAX® or other algorithms. However, for very high-risk patients, anabolic agents such as teriparatide, abaloparatide, or romosozumab are commonly recommended as first-line therapies due to their ability to stimulate new bone formation and improve bone microarchitecture, offering significant benefits in rapid fracture reduction over antiresorptive therapies. The cost-effectiveness of these agents is a critical consideration for decision-makers. Despite their higher costs, their effectiveness in significantly reducing fracture risk and improving quality of life can justify the investment, especially when long-term savings from reduced fracture rates and associated healthcare costs are considered. Additionally, after completing a course of anabolic therapy, transitioning to antiresorptive agents like bisphosphonates or denosumab is crucial to maintain the gains in bone density and minimize subsequent fracture risks. This sequential treatment approach ensures sustained protection and optimal resource utilization. In summary, the effective use of bone forming agents in osteoporosis requires a comprehensive strategy that includes accurate patient identification, consideration of cost-effectiveness, and implementation of appropriate sequential treatments, ultimately maximizing patient outcomes and healthcare efficiency.
Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Clinical Practice Guideline
Abstract Objective The objective is to formulate clinical practice guidelines for the pharmacological management of osteoporosis in postmenopausal women. Conclusions Evidence from clinical trials and insights from clinical experience with pharmacologic therapies for osteoporosis were critically evaluated in formulating this guideline for the management of postmenopausal osteoporosis. Patient preferences, data on adherence and persistence, and risks and benefits from the patient and provider perspectives were also considered in writing committee deliberations. A consensus by the Writing Committee members was achieved for four management principles: (i) The risk of future fractures in postmenopausal women should be determined using country-specific assessment tools to guide decision-making. (ii) Patient preferences should be incorporated into treatment planning. (iii) Nutritional and lifestyle interventions and fall prevention should accompany all pharmacologic regimens to reduce fracture risk. (iv) Multiple pharmacologic therapies are capable of reducing fracture rates in postmenopausal women at risk with acceptable risk-benefit and safety profiles. Management of therapies for osteoporosis in postmenopausal women.
Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial
Unlike most chronic diseases, osteoporosis treatments are generally limited to a single drug at a fixed dose and frequency. Nonetheless, no approved therapy is able to restore skeletal integrity in most osteoporotic patients and the long-term use of osteoporosis drugs is controversial. Thus, many patients are treated with the sequential use of two or more therapies. The DATA study showed that combined teriparatide and denosumab increased bone mineral density more than either drug alone. Discontinuing teriparatide and denosumab, however, results in rapidly declining bone mineral density. In this DATA-Switch study, we aimed to assess the changes in bone mineral density in postmenopausal osteoporotic women who transitioned between treatments. This randomised controlled trial (DATA-Switch) is a preplanned extension of the denosumab and teriparatide administration study (DATA), in which 94 postmenopausal osteoporotic women were randomly assigned to receive 24 months of teriparatide (20 mg daily), denosumab (60 mg every 6 months), or both drugs. In DATA-Switch, women originally assigned to teriparatide received denosumab (teriparatide to denosumab group), those originally assigned to denosumab received teriparatide (denosumab to teriparatide group), and those originally assigned to both received an additional 24 months of denosumab alone (combination to denosumab group). Bone mineral density at the spine, hip, and wrist were measured 6 months, 12 months, 18 months, and 24 months after the drug transitions as were biochemical markers of bone turnover. The primary endpoint was the percent change in posterior-anterior spine bone mineral density over 4 years. Between-group changes were assessed by one-way analysis of variance in our modified intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT00926380. Between Sept 27, 2011, and Jan 28, 2013, eligible women from the DATA study were enrolled into DATA-Switch. Of 83 potential enrollees from the DATA study, 77 completed at least one post-baseline visit. After 48 months, the primary outcome of mean spine bone mineral density increased by 18·3% (95% CI 14·9–21·8) in 27 women in the teriparatide to denosumab group, 14·0% (10·9–17·2) in 27 women the denosumab to teriparatide group, and 16·0% (14·0–18·0) in 23 women in the combination to denosumab group, although this increase did not differ significantly between groups (for between-group comparisons, p=0·13 for the teriparatide to denosumab group vs the denosumab to teriparatide group, p=0·30 for the teriparatide to denosumab group vs the combination to denosumab group, and p=0·41 for the denosumab to teriparatide group vs the combination to denosumab group). For the bone mineral density secondary outcomes, total hip bone mineral density increased more in the teriparatide to denosumab group (6·6% [95% CI 5·3–7·9]) than in the denosumab to teriparatide group (2·8% [1·3–4·2], p=0·0002), but had the greatest increase in the combination to denosumab group (8·6% [7·1–10·0]; p=0·0446 vs the teriparatide to denosumab group, p<0·0001 vs the denosumab to teriparatide group). Similarly, femoral neck bone mineral density increased more in the teriparatide to denosumab group (8·3% [95% CI 6·1–10·5]) and the combination to denosumab group (9·1% [6·1–12·0]) than in the denosumab to teriparatide group (4·9% [2·2–7·5]; p=0·0447 for teriparatide to denosumab vs denosumab to teriparatide, p=0·0336 for combination to denosumab vs denosumab to teriparatide). Differences between the combination to denosumab group and the teriparatide to denosumab group did not differ significantly (p=0·67). After 48 months, radius bone mineral density was unchanged in the teriparatide to denosumab group (0·0% [95% CI −1·3 to 1·4]), whereas it decreased by −1·8% (−5·0 to 1·3) in the denosumab to teriparatide group, and increased by 2·8% (1·2–4·4) in the combination to denosumab group (p=0·0075 for the teriparatide to denosumab group vs the combination to denosumab group; p=0·0099 for the denosumab to teriparatide group vs the combination to denosumab group). One participant in the denosumab to teriparatide group had nephrolithiasis, classified as being possibly related to treatment. In postmenopausal osteoporotic women switching from teriparatide to denosumab, bone mineral density continued to increase, whereas switching from denosumab to teriparatide results in progressive or transient bone loss. These results should be considered when choosing the initial and subsequent management of postmenopausal osteoporotic patients. Amgen, Eli Lilly, and National Institutes of Health.
Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial
No clinical trials have compared osteoporosis drugs with incident fractures as the primary outcome. We compared the anti-fracture efficacy of teriparatide with risedronate in patients with severe osteoporosis. In this double-blind, double-dummy trial, we enrolled post-menopausal women with at least two moderate or one severe vertebral fracture and a bone mineral density T score of less than or equal to −1·50. Participants were randomly assigned to receive 20 μg of teriparatide once daily plus oral weekly placebo or 35 mg of oral risedronate once weekly plus daily injections of placebo for 24 months. The primary outcome was new radiographic vertebral fractures. Secondary, gated outcomes included new and worsened radiographic vertebral fractures, clinical fractures (a composite of non-vertebral and symptomatic vertebral), and non-vertebral fractures. This study is registered with ClinicalTrials.gov (NCT01709110) and EudraCT (2012-000123-41). We enrolled 680 patients in each group. At 24 months, new vertebral fractures occurred in 28 (5·4%) of 680 patients in the teriparatide group and 64 (12·0%) of 680 patients in the risedronate group (risk ratio 0·44, 95% CI 0·29–0·68; p<0·0001). Clinical fractures occurred in 30 (4·8%) of 680 patients in the teriparatide group compared with 61 (9·8%) of 680 in the risedronate group (hazard ratio 0·48, 95% CI 0·32–0·74; p=0·0009). Non-vertebral fragility fractures occurred in 25 (4·0%) patients in the teriparatide group and 38 (6·1%) in the risedronate group (hazard ratio 0·66; 95% CI 0·39–1·10; p=0·10). Among post-menopausal women with severe osteoporosis, the risk of new vertebral and clinical fractures is significantly lower in patients receiving teriparatide than in those receiving risedronate. Lilly.
Effect of Parathyroid Hormone (1-34) on Fractures and Bone Mineral Density in Postmenopausal Women with Osteoporosis
Treatments for postmenopausal women with osteoporosis include estrogens, selective estrogen-receptor modulators, bisphosphonates, calcitonin, vitamin D, and calcitriol. These treatments reduce bone resorption (and formation) and moderately increase bone density; some agents reduce the risk of fracture, but none routinely restore normal bone mass or strength. Treatments that stimulate bone formation may overcome these limitations. Parathyroid hormone stimulates bone formation and resorption and can increase or decrease bone mass, depending on the mode of administration. Continuous infusions and daily subcutaneous injections of parathyroid hormone stimulate bone formation similarly but have different effects on bone resorption and bone mass. 1 , 2 Continuous infusions, . . .
An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment
Intra-articular injection of therapeutics is an effective strategy for treating osteoarthritis (OA), but it is hindered by rapid drug diffusion, thereby necessitating high-frequency injections. Hence, the development of a biofunctional hydrogel for improved delivery is required. In this study, we introduce a liposome-anchored teriparatide (PTH (1–34)) incorporated into a gallic acid-grafted gelatin injectable hydrogel (GLP hydrogel). We show that the GLP hydrogel can form in situ and without affecting knee motion after intra-articular injection in mice. We demonstrate controlled, sustained release of PTH (1–34) from the GLP hydrogel. We find that the GLP hydrogel promotes ATDC5 cell proliferation and protects the IL-1β-induced ATDC5 cells from further OA progression by regulating the PI3K/AKT signaling pathway. Further, we show that intra-articular injection of hydrogels into an OA-induced mouse model promotes glycosaminoglycans synthesis and protects the cartilage from degradation, supporting the potential of this biomaterial for OA treatment. Osteoarthritis is a common disease that causes pain and difficulty moving joints. Here the authors present an injectable gelatin-based hydrogel that slowly releases teriparatide drug to avoid frequent injections, offering a potential solution for patients with osteoarthritis.
Romosozumab in Postmenopausal Women with Low Bone Mineral Density
This study shows that in postmenopausal women with low bone mineral density, the monoclonal antibody romosozumab, which binds to sclerostin, an osteoblast-activity inhibitor, was associated with increased bone mineral density and bone formation and decreased bone resorption. Osteoporosis is characterized by low bone mass and defects in microarchitecture that are responsible for decreased bone strength and increased risk of fracture. 1 Antiresorptive drugs for osteoporosis increase bone mineral density and prevent the progression of structural damage but may not restore bone structure. Stimulation of bone formation is necessary to achieve improvements in bone mass, architecture, and strength. Sclerostin, encoded by the gene SOST, is an osteocyte-secreted glycoprotein that has been identified as a pivotal regulator of bone formation. By inhibiting the Wnt and bone morphogenetic protein signaling pathways, sclerostin impedes osteoblast proliferation and function, thereby decreasing bone formation. . . .
Teriparatide for osteoporosis: importance of the full course
Teriparatide (TPTD) is the only currently available therapeutic agent that increases the formation of new bone tissue and can provide some remediation of the architectural defects in the osteoporotic skeleton. The use of teriparatide clinically is limited to 24 months. We review clinical findings during daily teriparatide treatment over time. Teriparatide appears to increase bone formation more than bone resorption as determined biochemically and histologically. Teriparatide exerts its positive effects on bone formation in two distinct fashions. The first is direct stimulation of bone formation that occurs within active remodeling sites (remodeling-based bone formation) and on surfaces of bone previously inactive (modeling-based bone formation). The second is an increase in the initiation of new remodeling sites. Both processes contribute to the final increase in bone density observed by non-invasive tools such as DXA. Remodeling is the repair process by which skeletal tissue is maintained in a young healthy state, and when stimulated by TPTD is associated with a positive bone balance within each remodeling cavity. It seems likely therefore that this component will contribute to the anti-fracture efficacy of TPTD. Teriparatide reduces the risk of fracture, and this effect appears to increase with longer duration of therapy. The use of novel treatment regimens, including shorter courses, should be held in abeyance until controlled clinical trials are completed to define the relative fracture benefits of such approaches in comparison to the 24-month daily use of the agent. Summary In patients with osteoporosis at high risk for fracture, the full continuous 24-month course with teriparatide results in improved skeletal health and outcomes than shorter time periods.
Approach to the Patient: Pharmacological Therapies for Fracture Risk Reduction in Adults With Osteogenesis Imperfecta
Abstract Context Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility largely caused by defects in structure, synthesis, or post-translational processing of type I collagen. The effectiveness of medications used for fracture reduction in adults with OI is understudied and practice recommendations are not well established. Drugs currently used to improve skeletal health in OI were initially developed to treat osteoporosis. Oral and intravenous bisphosphonates have been shown to improve bone mineral density (BMD) in adults with OI and are commonly used; however, conclusive data confirming fracture protection are lacking. Similarly, teriparatide appears to increase BMD, an effect that seems to be limited to individuals with type I OI. The role of denosumab, abaloparatide, romosozumab, and estradiol/testosterone in adult OI have not been systematically studied. Anti-sclerostin agents and transforming growth factor-beta antagonists are under investigation in clinical trials. Objective This review summarizes current knowledge on pharmacologic treatment options for reducing fracture risk in adults with OI. Methods A PubMed online database search of all study types published in the English language using the terms “osteogenesis imperfecta,” “OI,” and “brittle bone disease” was performed in June 2022. Articles screened were restricted to adults. Additional sources were identified through manual searches of reference lists. Conclusion Fracture rates are elevated in adults with OI. Although clinical trial data are limited, bisphosphonates and teriparatide may be useful in improving BMD. Further research is needed to develop medications for adults with OI that will lead to definite fracture rate reduction.
Potential effects of teriparatide (PTH (1–34)) on osteoarthritis: a systematic review
Osteoarthritis (OA) is a common and prevalent degenerative joint disease characterized by degradation of the articular cartilage. However, none of disease-modifying OA drugs is approved currently. Teriparatide (PTH (1–34)) might stimulate chondrocyte proliferation and cartilage regeneration via some uncertain mechanisms. Relevant therapies of PTH (1–34) on OA with such effects have recently gained increasing interest, but have not become widespread practice. Thus, we launch this systematic review (SR) to update the latest evidence accordingly. A comprehensive literature search was conducted in PubMed, Web of Science, MEDLINE, the Cochrane Library, and Embase from their inception to February 2022. Studies investigating the effects of the PTH (1–34) on OA were obtained. The quality assessment and descriptive summary were made of all included studies. Overall, 307 records were identified, and 33 studies were included. In vivo studies ( n  = 22) concluded that PTH (1–34) slowed progression of OA by alleviating cartilage degeneration and aberrant remodeling of subchondral bone (SCB). Moreover, PTH (1–34) exhibited repair of cartilage and SCB, analgesic, and anti-inflammatory effects. In vitro studies ( n  = 11) concluded that PTH (1–34) was important for chondrocytes via increasing the proliferation and matrix synthesis but preventing apoptosis or hypertrophy. All included studies were assessed with low or unclear risk of bias in methodological quality. The SR demonstrated that PTH (1–34) could alleviate the progression of OA. Moreover, PTH (1–34) had beneficial effects on osteoporotic OA (OPOA) models, which might be a therapeutic option for OA and OPOA treatment.