Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
995
result(s) for
"Terminalia"
Sort by:
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
by
Van den Bulcke, Jan
,
De Mil, Tom
,
Van Acker, Joris
in
Agriculture & agronomie
,
Agriculture & agronomy
,
Biologie végétale (sciences végétales, sylviculture, mycologie...)
2016
Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching.
Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software.
Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software.
A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species.
Journal Article
Ellagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence
2013
Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors.
Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C(12)HSL and C(4)HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C(4)HSL. F7 also showed antagonistic activity against 3-oxo-C(12)HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract.
This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced sensitivity of its biofilm towards tobramycin.
Journal Article
Phytochemical Profiling and Quality Control of Terminalia sericea Burch. ex DC. Using HPTLC Metabolomics
by
Viljoen, Alvaro M
,
Chen, Weiyang
,
Anokwuru, Chinedu P.
in
Chromatography
,
Chromatography, High Pressure Liquid - methods
,
Chromatography, Thin Layer - methods
2021
Terminalia sericea is used throughout Africa for the treatment of a variety of conditions and has been identified as a potential commercial plant. The study was aimed at establishing a high-performance thin layer chromatography (HPTLC) chemical fingerprint for T. sericea root bark as a reference for quality control and exploring chemical variation within the species using HPTLC metabo3lomics. Forty-two root bark samples were collected from ten populations in South Africa and extracted with dichloromethane: methanol (1:1). An HPTLC method was optimized to resolve the major compounds from other sample components. Dichloromethane: ethyl acetate: methanol: formic acid (90:10:30:1) was used as the developing solvent and the plates were visualized using 10% sulfuric acid in methanol as derivatizing agent. The concentrations of three major bioactive compounds, sericic acid, sericoside and resveratrol-3-O-β-rutinoside, in the extracts were determined using a validated ultra-performance liquid chromatography-photodiode array (UPLC-PDA) detection method. The rTLC software (written in the R-programming language) was used to select the most informative retardation factor (Rf) ranges from the images of the analysed sample extracts. Further chemometric models, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were constructed using the web-based high throughput metabolomic software. The rTLC chemometric models were compared with the models previously obtained from ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A characteristic fingerprint containing clear bands for the three bioactive compounds was established. All three bioactive compounds were present in all the samples, although their corresponding band intensities varied. The intensities correlated with the UPLC-PDA results, in that samples containing a high concentration of a particular compound, displayed a more intense band. Chemometric analysis using HCA revealed two chemotypes, and the subsequent construction of a loadings plot indicated that sericic acid and sericoside were responsible for the chemotypic variation; with sericoside concentrated in Chemotype 1, while sericic acid was more abundant in Chemotype 2. A characteristic chemical fingerprint with clearly distinguishable features was established for T. sericea root bark that can be used for species authentication, and to select samples with high concentrations of a particular marker compound(s). Different chemotypes, potentially differing in their therapeutic potency towards a particular target, could be distinguished. The models revealed the three analytes as biomarkers, corresponding to results reported for UPLC-MS profiling and thereby indicating that HPTLC is a suitable technique for the quality control of T. sericea root bark.
Journal Article
Chemical Profiling and Therapeutic Evaluation of Standardized Hydroalcoholic Extracts of Terminalia chebula Fruits Collected from Different Locations in Manipur against Colorectal Cancer
by
Sharma, Nanaocha
,
Devika Chanu, Khaidem
,
Chaudhary, Sushil Kumar
in
Biodiversity
,
Colorectal cancer
,
Colorectal Neoplasms - drug therapy
2023
Terminalia chebula Retz. (Fam. Combretaceae), locally called Manahei, is a well-known medicinal plant that grows wildly in Manipur, a Northeastern state of India. It is used as a mild laxative, an anti-inflammatory agent, and a remedy for piles, colds, and ulcers by ethnic communities of the state. The hydroalcoholic extract obtained from four fruit samples of T. chebula collected from different locations in Manipur were analyzed using gas chromatography–mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC) for their chemical constituents and evaluated for their anticancer activity against the colon cancer cell HCT 116. GC-MS analysis results indicated significant variation in the composition and percentage of major compounds present in the extracts. 1,2,3-Benzenetriol was the most abundant chemical constituent present in all four extracts of T. chebula, ranging from 20.95 to 43.56%. 2-Cyclopenten-1-one, 5-hydroxymethylfurfural, and catechol were commonly present in all extracts. Two marker compounds, gallic acid and ellagic acid, were also quantified usingHPTLC in all four extracts of T. chebula. The highest content of gallic acid (22.44 ± 0.056 µg/mg of dried extract) was observed in TCH, and that of ellagic acidwas found in TYH (11.265 ± 0.089 µg/mg of dried extract). The IC50 value of TYH for the DPPH and ABTS assays (12.16 ± 0.42 and 7.80 ± 0.23 µg/mL) was found to be even lower than that of Trolox (18 ± 0.44 and 10.15 ± 0.24 µg/mL), indicating its strong antioxidant properties among the four extracts of T. chebula. The MTT assay determined the effect of T. chebula extracts on the viability of HCT 116 cells. TYH showed the highest activity with anIC50 value of 52.42 ± 0.87 µg/mL, while the lowest activity was observed in TCH (172.05 ± 2.0 µg/mL). The LDH assay confirmed the cytotoxic effect of TYH in HCT 116 cells. TYH was also found to induce caspase-dependent apoptosis in HCT 116 cells after 48 h of treatment. Our study provides insight into the diversity of T. chebula in Manipur and its potential activity against colon cancer.
Journal Article
Selected Australian Terminalia Species Extracts Inhibit β-Lactam Drug-Resistant Bacteria Growth and Potentiate the Activity of Conventional Antibiotics: Bioactivities and Phytochemistry
by
Zai, Muhammad Jawad
,
Cheesman, Matthew James
,
Cock, Ian Edwin
in
Acetic acid
,
Amides
,
Antibacterial activity
2024
Terminalia ferdinandiana Exell, Terminalia grandiflora Benth., Terminalia microcarpa Decne., and Terminalia muelleri Benth. (family: Combretaceae) belong to the genus Terminalia. Plants of this genus have been extensively used as traditional medicines to treat a variety of illnesses, including pathogen infections. However, we were unable to find any studies that have investigated the antibacterial activity of T. microcarpa. Similarly, whilst some preliminary studies have examined the antimicrobial properties of T. muelleri and T. grandiflora, they did not test the extracts against antibiotic-resistant pathogens. This study screens the antimicrobial activity of T. grandiflora, T. microcarpa, and T. muelleri and compares it to that of T. ferdinandiana extracts prepared from both the fruit and leaves against a range of pathogens, including multi-antibiotic-resistant strains. Solvents with varying polarities were used to extract different phytochemical constituents from the leaves of T. grandiflora, T. microcarpa, and T. muelleri and from the fruit and leaves of T. ferdinandiana. The aqueous and methanolic extracts each displayed significant antimicrobial activity when tested against the bacterial pathogens, including against the multidrug-resistant strains. When these extracts were tested in combination with selected antibiotics, some extracts potentiated the antimicrobial activity. This study identifies twelve synergistic, fifty-eight additive, and sixty non-interactive combinations, as well as thirty antagonistic effects. The extracts were evaluated for toxicity using the Artemia franciscana nauplii lethality assay (ALA) and were each classified as non-toxic, with the exception of the methanolic and aqueous T. ferdinandiana fruit extracts and the aqueous and ethyl acetate T. ferdinandiana leaf extracts. Metabolomic analysis using liquid chromatography–mass spectrometry (LC-MS) highlighted several flavonoids and tannins that may contribute to the antimicrobial activities reported herein. The potential antibacterial mechanism(s) of the T. ferdinandiana extracts are discussed in this study.
Journal Article
1,3,6-Trigalloylglucose: A Novel Potent Anti-Helicobacter pylori Adhesion Agent Derived from Aqueous Extracts of Terminalia chebula Retz
2024
1,3,6-Trigalloylglucose is a natural compound that can be extracted from the aqueous extracts of ripe fruit of Terminalia chebula Retz, commonly known as “Haritaki”. The potential anti-Helicobacter pylori (HP) activity of this compound has not been extensively studied or confirmed in scientific research. This compound was isolated using a semi-preparative liquid chromatography (LC) system and identified through Ultra-high-performance liquid chromatography–MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR). Its role was evaluated using Minimum inhibitory concentration (MIC) assay and minimum bactericidal concentration (MBC) assay, scanning electron microscope (SEM), inhibiting kinetics curves, urea fast test, Cell Counting Kit-8 (CCK-8) assay, Western blot, and Griess Reagent System. Results showed that this compound effectively inhibits the growth of HP strain ATCC 700392, damages the HP structure, and suppresses the Cytotoxin-associated gene A (Cag A) protein, a crucial factor in HP infection. Importantly, it exhibits selective antimicrobial activity without impacting normal epithelial cells GES-1. In vitro studies have revealed that 1,3,6-Trigalloylglucose acts as an anti-adhesive agent, disrupting the adhesion of HP to host cells, a critical step in HP infection. These findings underscore the potential of 1,3,6-Trigalloylglucose as a targeted therapeutic agent against HP infections.
Journal Article
Impact of Terminalia chebula Retz polysaccharide and Rubia cordifolia L. processed Terminalia chebula Retz polysaccharides on cyclophosphamide-induced immunosuppression in Chinese yellow quail
2025
Immunosuppression in poultry production, particularly in high-value species like the Chinese yellow quail (Coturnix japonica), increases disease susceptibility and economic losses. Plant-derived polysaccharides, such as those from
Retz (TC) and
L. processed Terminalia chebula Retz polysaccharide (RTCP), offer promising alternatives due to their ability to enhance host defense mechanisms without adverse effects. This study investigates RTCP's efficacy in mitigating cyclophosphamide (CTX)-induced immunosuppression in quails, focusing on immune function restoration.
One hundred and twenty 21-day-old healthy quails were randomly divided into six groups (n=20/group): a blank control (saline), a model group (saline + CTX), and four RTCP-treated groups (0.25, 0.5, 0.75, 1 g/kg + CTX). CTX (80 mg/kg) was administered intramuscularly (days 4-7) to induce immunosuppression, except in the blank control. Spleen indices, histology, cytokine profiles, antibody titers, GATA-3/T-bet mRNA expression, and transcriptional networks were analyzed.
CTX significantly reduced spleen weight, organ indices, cytokine levels, and antibody titers (P<0.05). Compared to the model group, 0.5 g/kg RTCP restored spleen morphology and function, elevated cytokines (e.g., IL-2, IFN-γ) and immunoglobulins, and upregulated complement components (C3, C5) and acute-phase proteins, enhancing T-cell and B-cell activation (P<0.05). RTCP also rebalanced the Th1/Th2 axis by normalizing the T-bet/GATA-3 ratio, indicating immune homeostasis recovery.
RTCP effectively counteracted CTX-induced immunosuppression by modulating innate and adaptive immunity, including complement activation and Th1/Th2 balance. These findings highlight RTCP's potential as a natural immunomodulator in poultry. Further research should optimize dosing and explore gut-microbiota-immune interactions to enhance therapeutic applications.
Journal Article
Preventive effect of Terminalia bellirica (Gaertn.) Roxb. extract on mice infected with Salmonella Typhimurium
2023
Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional herbal combination used in Chinese medicine for the treatment of a broad range of diseases. In this study, thirty KM mice were randomly divided into control (N), infection group (NS), and the TB protection group (HS). Based on its digestive feature, intestinal physical barrier, immunological barrier and gut microbiota effects in vivo on challenged with S.typhimurium mice were investigated after oral administration of 600 mg/kg b.wt of TB for 13 days. The results show that the extract could improve the level of serum immunoglobulins (IgA and IgG), decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the V3–V4 region of the 16S rRNA analyzed, the results of the taxonomic structure of the intestinal microbiota demonstrated that the TB prevention effect transformed the key phylotypes of the gut microbiota in S. Typhimurium- challenged mice and promoted the multiplication of beneficial bacteria. Furthermore, the abundance of Firmicutes and Deferribacteres increased, while that of Bacteroidetes and Actinobacteria decreased. At the genus level, the abundance of Ruminococcus and Oscillospira was substantially enhanced, while the other dominant genera showed no significant change between the vehicle control groups and the TB prevention groups. In summary, these results provide evidence that the administration of TB extract can prevent S. Typhimurium infection by alleviating the intestinal physical and immunological barriers and normalizing the gut microbiota, highlighting a promising application in clinical treatment. Thus, our results provide new insights into the biological functions of TB for the preventive effect of intestinal inflammation.
Journal Article
Potential induction of the relative mRNA expression levels of CYP450 by Zhicaowu-Hezi (Aconiti kusnezoffii radix preparata and Terminalia chebula Retz.)
by
An, Ming
,
Guo, Jingjing
,
Fang, Longlong
in
Aconiti kusnezoffii Radix Preparata
,
Antioxidants
,
Biotechnology
2025
Processed Aconiti Kusnezoffii Radix (Aconiti kusnezoffii Radix Preparata, Zhicaowu) and
Retz. (Hezi) are a classic herb pair in Mongolian medicine, where Hezi mitigates Zhicaowu's hepatotoxicity. Despite extensive studies on their detoxification effects, the role of cytochrome P450 (CYP450) modulation remains unclear.
This study aimed to systematically evaluate the regulatory effects of Zhicaowu and Hezi combination on both enzymatic activity and mRNA expression of CYP450 isoforms (CYP1a2, CYP2b1, CYP2c11, CYP2c13, CYP2d2, CYP2e1, and CYP3a1), and to explore their correlation with hepatoprotective effect.
The effects of Zhicaowu-Hezi formulation on CYP450 enzymes were systematically evaluated through integrated
and
approaches. Rats received 14-day oral administrations of either Zhicaowu, Hezi, or their combinations (1:1, 1:3, 3:1 ratios), followed by comprehensive assessment using: (1) cocktail probe drug assays monitoring seven CYP450 isoforms (CYP1a2, 2b1, 2c11, 2c13, 2d2, 2e1, 3a1) with HPLC quantification methods for substrate detection, (2) RT-qPCR analysis of hepatic CYP450 mRNA expression, and (3) parallel
studies employing rat liver microsomes to verify enzyme activity changes. These pharmacological evaluations were correlated with histopathological and biochemical indices to establish mechanistic relationships between CYP450 modulation and hepatotoxicity attenuation.
Pathological and biochemical analyses confirmed Hezi's hepatoprotective effects against Zhicaowu-induced toxicity, with the 1:3 Zhicaowu-Hezi combination showing optimal efficacy.
pharmacokinetic studies revealed that Zhicaowu significantly inhibited CYP1a2, CYP2d2, CYP3a1, and CYP2c11 activities, as demonstrated by marked increases in the AUC
, AUC
), and C
values of their respective probe substrates (theophylline, metoprolol, testosterone, and diclofenac), along with significantly prolonged t
z and reduced CLz/F. It is worth noting that the combined use of Hezi effectively reversed these changes by inducing CYP450, causing significant alterations in the pharmacokinetic parameters of these four substrates. Complementary
studies using liver microsomes consistently showed that Hezi treatment significantly enhanced the metabolic clearance of these four substrates. At the molecular level, RT-qPCR analysis demonstrated that Zhicaowu significantly suppressed hepatic CYP1a2, CYP2d2, CYP3a1, and CYP2c11 mRNA expression, while Hezi co-treatment restored their expression to normal or elevated levels.
Hezi dose-dependently induced CYP450 enzyme activity, reversing Zhicaowu's inhibition of CYP1a2/2d2/3a1/2c11 and markedly improving liver function and histopathology. These results elucidate the scientific basis for toxicity reduction in Zhicaowu-Hezi herb pair through metabolic enzyme regulation, supporting its traditional use. Future studies will focus on toxic alkaloid (e.g., aconitine) pharmacokinetics and their transcriptional regulatory pathways.
Journal Article
Effects of the Ethanol and Ethyl Acetate Extracts of Terminalia chebula Retz. on Proliferation, Migration, and HIF-1α and CXCR-4 Expression in MCF-7 Cells: an In Vitro Study
by
Khoshfekr, Vajihe
,
Jafarinejad-Farsangi, Saeideh
,
Tarzi, Mojdeh Esmaeili
in
Acetic acid
,
Acids
,
Antioxidants
2023
Over recent years, much attention has been devoted to the field of screening natural products and/or their novel structures because of reversing cancer progression. The current research work was intended to explore the cytotoxic activity of ethanol and ethyl acetate extracts of dried fruit of Terminalia chebula Retz. (T. chebula) in MCF-7 cell line. High-performance thin-layer chromatographic (HPTLC) method and Folin-Ciocalteu colorimetric techniques were performed. Anti-proliferative activities of T. chebula fruit extracts on the MCF-7 cell line were evaluated using MTT assay. Effects of both extracts on the migration of MCF-7 cells and the size of MCF-7-derived spheroids were also evaluated. Moreover, antioxidant properties were measured by DPPH and FRAP methods. Western blotting was used to measure the HIF-1α and CXCR-4 protein levels. Chebulagic acid, gallic acid, chebulinic acid, and ellagic acid were found as major compounds in both extracts. The total phenolic contents based on gallic acid equivalent (GAE) in the ethanol and ethyl acetate extracts of T. chebula were found to be 453.68 ± 0.31 and 495.12 ± 0.43 mg GAE/g dry weight of the extract, respectively. Both extracts exerted a significant dose- and time-dependent cytotoxicity effect on MCF-7 cells. They also had a marked negative effect on the average size of MCF-7-derived spheroids and their migration rate. None of the extracts exhibited stronger antioxidant activities than vitamin C. Furthermore, both extracts at a concentration of 125 µg/ml could meaningfully decrease the expression levels of HIF-1α and CXCR-4 in MCF-7 cells. These data represent that T. chebula may be a valuable medicinal resource in the regulation of breast cancer proliferation, growth, and metastasis.
Journal Article