Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
587
result(s) for
"Tetrahydrofolate Dehydrogenase - metabolism"
Sort by:
Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers
2020
Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.
Journal Article
Methotrexate and its mechanisms of action in inflammatory arthritis
2020
Despite the introduction of numerous biologic agents for the treatment of rheumatoid arthritis (RA) and other forms of inflammatory arthritis, low-dose methotrexate therapy remains the gold standard in RA therapy. Methotrexate is generally the first-line drug for the treatment of RA, psoriatic arthritis and other forms of inflammatory arthritis, and it enhances the effect of most biologic agents in RA. Understanding the mechanism of action of methotrexate could be instructive in the appropriate use of the drug and in the design of new regimens for the treatment of RA. Although methotrexate is one of the first examples of intelligent drug design, multiple mechanisms potentially contribute to the anti-inflammatory actions of methotrexate, including the inhibition of purine and pyrimidine synthesis, transmethylation reactions, translocation of nuclear factor-κB (NF-κB) to the nucleus, signalling via the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway and nitric oxide production, as well as the promotion of adenosine release and expression of certain long non-coding RNAs.Methotrexate can suppress inflammation via multiple mechanisms that can differ across different cell types. Understanding these mechanisms might enable better understanding of the disease and prediction of treatment responses.
Journal Article
Regulation of the one carbon folate cycle as a shared metabolic signature of longevity
2021
The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in
C. elegans
to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in
C. elegans
reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
Metabolic pathways are closely intertwined with longevity. Here the authors perform metabolomic profiling of canonical longevity pathways and show that folate and methionine cycle intermediates are changed in common, and further, genetic manipulation of pathway enzymes and supplementation with metabolites indicates that they causally regulate longevity.
Journal Article
Histidine catabolism is a major determinant of methotrexate sensitivity
2018
The chemotherapeutic drug methotrexate inhibits the enzyme dihydrofolate reductase
1
, which generates tetrahydrofolate, an essential cofactor in nucleotide synthesis
2
. Depletion of tetrahydrofolate causes cell death by suppressing DNA and RNA production
3
. Although methotrexate is widely used as an anticancer agent and is the subject of over a thousand ongoing clinical trials
4
, its high toxicity often leads to the premature termination of its use, which reduces its potential efficacy
5
. To identify genes that modulate the response of cancer cells to methotrexate, we performed a CRISPR–Cas9-based screen
6
,
7
. This screen yielded
FTCD
, which encodes an enzyme—formimidoyltransferase cyclodeaminase—that is required for the catabolism of the amino acid histidine
8
, a process that has not previously been linked to methotrexate sensitivity. In cultured cancer cells, depletion of several genes in the histidine degradation pathway markedly decreased sensitivity to methotrexate. Mechanistically, histidine catabolism drains the cellular pool of tetrahydrofolate, which is particularly detrimental to methotrexate-treated cells. Moreover, expression of the rate-limiting enzyme in histidine catabolism is associated with methotrexate sensitivity in cancer cell lines and with survival rate in patients. In vivo dietary supplementation of histidine increased flux through the histidine degradation pathway and enhanced the sensitivity of leukaemia xenografts to methotrexate. The histidine degradation pathway markedly influences the sensitivity of cancer cells to methotrexate and may be exploited to improve methotrexate efficacy through a simple dietary intervention.
Histidine metabolism influences the sensitivity of cancer cells to methotrexate, with mice bearing leukaemia xenografts showing increased response to the drug upon histidine supplementation.
Journal Article
Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants
by
Van Der Straeten, Dominique
,
Cuypers, Ann
,
Stove, Christophe P.
in
Arabidopsis - genetics
,
Arabidopsis - metabolism
,
Arabidopsis Proteins - genetics
2017
Folates (B9 vitamins) are essential cofactors in one-carbon metabolism. Since C1 transfer reactions are involved in synthesis of nucleic acids, proteins, lipids, and other biomolecules, as well as in epigenetic control, folates are vital for all living organisms. This work presents a complete study of a plant DHFR-TS (dihydrofolate reductase-thymidylate synthase) gene family that implements the penultimate step in folate biosynthesis. We demonstrate that one of the DHFR-TS isoforms (DHFR-TS3) operates as an inhibitor of its two homologs, thus regulating DHFR and TS activities and, as a consequence, folate abundance. In addition, a novel function of folate metabolism in plants is proposed, i.e., maintenance of the redox balance by contributing to NADPH production through the reaction catalyzed by methylenetetrahydrofolate dehydrogenase, thus allowing plants to cope with oxidative stress.
Journal Article
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps
by
Bitran, Amir
,
Jacobs, William M.
,
Zhai, Xiadi
in
Alcohol Oxidoreductases - chemistry
,
Alcohol Oxidoreductases - genetics
,
Alcohol Oxidoreductases - metabolism
2020
Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.
Journal Article
A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis
by
Gam, Jongsik
,
Wilson, Ian A.
,
Benkovic, Stephen J.
in
Active sites
,
Amino Acid Sequence
,
Analytical, structural and metabolic biochemistry
2011
Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.
Journal Article
Biophysical principles predict fitness landscapes of drug resistance
by
Shakhnovich, Eugene I.
,
Rodrigues, João V.
,
Lozovsky, Elena R.
in
Amino Acid Sequence
,
Antibiotic resistance
,
Biological Sciences
2016
Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi. We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype–phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies.
Journal Article
in Vivo Map of the Yeast Protein Interactome
by
Malitskaya, Yelena
,
Michnick, Stephen W
,
Messier, Vincent
in
Actins
,
Autophagy
,
Biological and medical sciences
2008
Protein interactions regulate the systems-level behavior of cells; thus, deciphering the structure and dynamics of protein interaction networks in their cellular context is a central goal in biology. We have performed a genome-wide in vivo screen for protein-protein interactions in Saccharomyces cerevisiae by means of a protein-fragment complementation assay (PCA). We identified 2770 interactions among 1124 endogenously expressed proteins. Comparison with previous studies confirmed known interactions, but most were not known, revealing a previously unexplored subspace of the yeast protein interactome. The PCA detected structural and topological relationships between proteins, providing an 8-nanometer-resolution map of dynamically interacting complexes in vivo and extended networks that provide insights into fundamental cellular processes, including cell polarization and autophagy, pathways that are evolutionarily conserved and central to both development and human health.
Journal Article
From Binding to Catalysis: Emergence of a Rudimentary Enzyme Conferring Intrinsic Antibiotic Resistance
by
Lemay-St-Denis, Claudèle
,
St-Aubin, Maxime
,
Copp, Janine N
in
Anti-Bacterial Agents - pharmacology
,
Antibiotic resistance
,
Antibiotics
2025
Abstract
How does enzymatic activity emerge? To shed light on this fundamental question, we study type B dihydrofolate reductases (DfrB), which were discovered for their role in antibiotic resistance. These rudimentary enzymes are evolutionarily distinct from the ubiquitous, monomeric FolA dihydrofolate reductases targeted by the antibiotic trimethoprim. DfrB is unique: it homotetramerizes to form a highly symmetrical central tunnel that accommodates its substrates in close proximity and the right orientation, thus promoting the metabolically essential production of tetrahydrofolate. It is the only known enzyme built from the ancient Src Homology 3 fold, typically a binding module. Strikingly, by studying the evolution of this enzyme family, we observe that no active-site residues are conserved across catalytically active homologs. Integrating experimental and computational analyses, we identify an intricate relationship between homotetramerization and catalytic activity, where formation of a tunnel featuring positive electrostatic potential proves to be a powerful predictor of activity. We demonstrate that the DfrB enzymes have not evolved in response to the synthetic antibiotic to which they confer strong resistance, and propose that DfrB domains evolved the capacity for rudimentary catalysis from a binding capacity. That (rudimentary) catalysis can emerge from the homotetramerization of a binding domain, and that it has been recently recruited by pathogenic bacteria, manifests the opportunistic nature of evolution.
Journal Article