Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
190 result(s) for "Tetrahydrofolates - blood"
Sort by:
Pharmacokinetics of Sodium and Calcium Salts of (6S)-5-Methyltetrahydrofolic Acid Compared to Folic Acid and Indirect Comparison of the Two Salts
(6S)-5-Methyltetrahydrofolic acid ((6S)-5-Methyl-THF) salts and folic acid may differ in their abilities to raise plasma (6S)-5-Methyl-THF levels. We compared the area under the curve (AUC), Cmax, and Tmax of plasma (6S)-5-Methyl-THF after intakes of (6S)-5-Methyl-THF-Na salt (Arcofolin®) and folic acid. Moreover, we compared the AUCs after intakes of (6S)-5-Methyl-THF-Na and the calcium salt, (6S)-5-Methyl-THF-Ca, that were tested against folic acid in two independent studies. The study was randomized, double blind, and cross over. Twenty-four adults (12 men and 12 women) received a single oral dose of 436 µg (6S)-5-Methyl-THF-Na and an equimolar dose of folic acid (400 µg) on two kinetic days with two weeks washout period in between. The plasma concentrations of (6S)-5-Methyl-THF were measured at 9 time points between 0 and 8 h. We found that the AUC0–8 h of plasma (6S)-5-Methyl-THF (mean (SD) = 126.0 (33.6) vs. 56.0 (25.3) nmol/L*h) and Cmax (36.8 (10.8) vs. 11.1 (4.1) nmol/L) were higher after administration of (6S)-5-Methyl-THF-Na than after the administration of folic acid (p < 0.001 for both). These differences were present in men and women. Only administration of folic acid resulted in a transient increase in plasma unmetabolized folic acid (2.5 (2.0) nmol/L after 0.5 h and 4.7 (2.9) nmol/L after 1 h). Intake of (6S)-5-Methyl-THF-Na was safe. The ratios of the AUC0–8 h for (6S)-5-Methyl-THF-Na and (6S)-5-Methyl-THF-Ca to the corresponding folic acid reference group and the delta of these AUC0–8 h did not differ between the studies. In conclusion, a single oral dose of (6S)-5-Methyl-THF-Na caused higher AUC0–8 h and Cmax of plasma (6S)-5-Methyl-THF compared to folic acid. The Na- and Ca- salts of (6S)-5-Methyl-THF are not likely to differ in their pharmacokinetics. Further studies may investigate whether supplementation of the compounds for a longer time will lead to differences in circulating or intracellular/tissue folate concentrations.
Is natural (6S)-5-methyltetrahydrofolic acid as effective as synthetic folic acid in increasing serum and red blood cell folate concentrations during pregnancy? A proof-of-concept pilot study
Background North American health authorities recommend 0.4 mg/day folic acid before conception and throughout pregnancy to reduce the risk of neural tube defects. Folic acid is a synthetic form of folate that must be reduced by dihydrofolate reductase and then further metabolized. Recent evidence suggests that the maximal capacity for this process is limited and unmetabolized folic acid has been detected in the circulation. The biological effects of unmetabolized folic acid are unknown. A natural form of folate, (6 S )-5-methyltetrahydrofolic acid (Metafolin®), may be a superior alternative because it does not need to be reduced in the small intestine. Metafolin® is currently used in some prenatal multivitamins; however, it has yet to be evaluated during pregnancy. Methods/design This double-blind, randomized trial will recruit 60 pregnant women aged 19–42 years. The women will receive either 0.6 mg/day folic acid or an equimolar dose (0.625 mg/day) of (6 S )-5-methyltetrahydrofolic acid for 16 weeks. The trial will be initiated at 8–21 weeks’ gestation (after neural tube closure) to reduce the risk of harm should (6 S )-5-methyltetrahydrofolic acid prove less effective. All women will also receive a prenatal multivitamin (not containing folate) to ensure adequacy of other nutrients. Baseline and endline blood samples will be collected to assess primary outcome measures, including serum folate, red blood cell folate and unmetabolized folic acid. The extent to which the change in primary outcomes from baseline to endline differs between treatment groups, controlling for baseline level, will be estimated using linear regression. Participants will have the option to continue supplementing until 1 week postpartum to provide a breastmilk and blood sample. Exploratory analyses will be completed to evaluate breastmilk and postpartum blood folate concentrations. Discussion This proof-of-concept trial is needed to obtain estimates of the effect of (6 S )-5-methyltetrahydrofolic acid compared to folic acid on circulating biomarkers of folate status during pregnancy. These estimates will inform the design of a definitive trial which will be powered to assess whether (6 S )-5-methyltetrahydrofolic acid is as effective as folic acid in raising blood folate concentrations during pregnancy. Ultimately, these findings will inform folate supplementation policies for pregnant women. Trial registration ClinicalTrials.gov, ID: NCT04022135 . Registered on 14 July 2019.
Relationship between folate concentration and expression of folate-associated genes in tissue and plasma after intraoperative administration of leucovorin in patients with colorectal cancer
PurposeThe aim of study was to investigate the relationship between folate concentration and expression of folate-associated genes in tumour, mucosa and plasma of patients with colorectal cancer, after intraoperative administration of bolus leucovorin (LV).MethodsEighty patients were randomized into four groups to receive 0, 60, 200, or 500 mg/m2 LV, respectively. Tissue and plasma folate concentrations were assessed by LC–MS/MS. Gene expression of ABCC3/MRP3, FPGS, GGH, MTHFD1L, SLC46A1/PCFT, and SLC19A1/RFC-1 was determined using quantitative PCR.ResultsThe folate concentration in tumour increased with increasing dosage of LV. Half of the patients treated with 60 mg/m2 did not reach a level above the levels of untreated patients. A significant correlation between folate concentration in tumour and mucosa was found in untreated patients, and in the group treated with 60 mg/m2 LV. The 5-MTHF/LV ratio correlated negatively with folate concentration in mucosa, whereas a positive correlation was found in tumour of patients who received 200 or 500 mg/m2 LV. A positive correlation was found between folate concentration and expression of all genes, except MTHFD1L, in patients who received LV. There was a negative correlation between 5-MTHF concentration in plasma of untreated patients and expression of GGH and SLC46A1/PCFT in tumour.ConclusionsThe results indicate the possibility of using the individual plasma 5-MTHF/LV ratio after LV injection as a surrogate marker for tissue folate concentration. Expression of several folate-associated genes is associated with folate concentration in tissue and plasma and may become useful when predicting response to LV treatment.
One-carbon metabolites and telomere length in a prospective and randomized study of B- and/or D-vitamin supplementation
Background Vitamin B deficiency is common in elderly people and has been associated with an increased risk of developing age-related diseases. B-vitamins are essential for the synthesis and stability of DNA. Telomers are the end caps of chromosomes that shorten progressively with age, and short telomers are associated with DNA instability. Objective In the present randomized intervention study, we investigated whether the one-carbon metabolism is related to telomere length, a surrogate marker for cellular aging. Design Sixty-five subjects (>54 years) were randomly assigned to receive either a daily combination of vitamin D3 (1200 IU), folic acid (0.5 mg), vitamin B 12 (0.5 mg), vitamin B 6 (50 mg) and calcium carbonate (456 mg) (group A) or vitamin D3 and calcium carbonate alone (group B). Blood testing was performed at baseline and after 1 year of supplementation. The concentrations of several metabolites of the one-carbon pathway, as well as relative telomere length (RTL) and 5,10-methylenetetrahydrofolate reductase C677T genotype, were analyzed. Results At baseline, age- and gender-adjusted RTL correlated with total folate and 5-methyltetrahydrofolate (5-methylTHF). Subjects with RTL above the median had higher concentrations of total folate and 5-methylTHF compared to subjects below the median. At study end, gender- and age-adjusted RTL correlated in group A with methylmalonic acid (MMA; r  = −0.460, p  = 0.0012) and choline ( r  = 0.434, p  = 0.0021) and in group B with 5,10-methenyltetrahydrofolate ( r  = 0.455, p  = 0.026) and dimethylglycine (DMG; r  = −0.386, p  = 0.047). Subjects in the group A with RTL above the median had lower MMA and higher choline compared to subjects below the median. Conclusions The present pilot study suggests a functional relationship between one-carbon metabolism and telomere length. This conclusion is supported by several correlations that were modified by B-vitamin supplementation. In agreement with our hypothesis, the availability of nucleotides and methylation groups seems to impact telomere length. Due to the small sample size and the limitations of the study, further studies should confirm the present results in a larger cohort.
Relative bioavailability of 13C5-folic acid in pectin-coated folate fortified rice in humans using stable isotope techniques
Background/Objectives: The aim of the study was to measure the relative bioavailability of labeled pteroylglutamic acid (13C5-PteGlu) from a pectin-coated fortified rice in vivo to measure any effect of the edible coating on folic acid bioavailability. Subjects/Methods: Healthy volunteers ( N =26) aged 18–39 years received three test meals in three randomized short-term cross-over trials: Trial 1: aqueous 400 μg 13C5-PteGlu, Trial 2: 200 g cooked white rice+400 μg 13C5-PteGlu,Trial 3: 200 g fortified cooked white rice with pectin-coated premix containing 400 μg 13C5-PteGlu. Blood samples were drawn at 0,1,2,5 and 8 h postprandial. The concentration of 13C5-5 methyl-tetrahydrofolate appearing in plasma was quantified using high performance liquid chromatography–mass spectrometry (MS)/MS. For 24 h before baseline estimation and during the area under the curve (AUC) study, the subjects were placed on a low folate diet (∼100 μg/day). The relative bioavailability of the folic acid following Trial 3 was measured by comparing the 13C5-5 methyl-tetrahydrofuran (THF) AUC with Trials 1 and 2. Results: The bioavailability of folic acid in a pectin-coated rice premix was 68.7% (range 47–105) and 86.5% (range 65–115) in uncoated fortified rice relative to aqueous folic acid. Conclusion: This study is the first demonstration of the bioavailability of folate in pectin-coated fortified rice in humans.
Comparison of (6S)-5-methyltetrahydrofolic acid v. folic acid as the reference folate in longer-term human dietary intervention studies assessing the relative bioavailability of natural food folates: comparative changes in folate status following a 16-week placebo-controlled study in healthy adults
Folic acid (pteroylmonoglutamic acid) has historically been used as the reference folate in human intervention studies assessing the relative bioavailability of dietary folate. Recent studies using labelled folates indicated different plasma response kinetics to folic acid than to natural (food) folates, thus obviously precluding its use in single-dose experiments. Since differences in tissue distribution and site of biotransformation were hypothesised, the question is whether folic acid remains suitable as a reference folate for longer-term intervention studies, where the relative bioavailability of natural (food) folate is assessed based on changes in folate status. Healthy adults aged 18–65 years (n 163) completed a 16-week placebo-controlled intervention study in which the relative bioavailability of increased folate intake (453 nmol/d) from folate-rich foods was assessed by comparing changes in plasma and erythrocyte folate concentration with changes induced by an equal reference dose of supplemental (6S)-5-methyltetrahydrofolic acid or folic acid. The relative increase in plasma folate concentration in the food group was 31 % when compared with that induced by folic acid, but 39 % when compared with (6S)-5-methyltetrahydrofolic acid. The relative increase in erythrocyte folate concentration in the food group when compared with that induced by folic acid was 43 %, and 40 % when compared with (6S)-5-methyltetrahydrofolic acid. When recent published observations were additionally taken into account it was concluded that, in principle, folic acid should not be used as the reference folate when attempting to estimate relative natural (food) folate bioavailability in longer-term human intervention studies. Using (6S)-5-methyltetrahydrofolic acid as the reference folate would avoid future results' validity being questioned.
Pharmacokinetic study on the utilisation of 5‐methyltetrahydrofolate and folic acid in patients with coronary artery disease
Methylenetetrahydrofolate reductase (MTHFR) is a regulating enzyme in folate‐dependant homocysteine remethylation, because it catalyses the reduction of 5,10 methylenetetrahydrofolate to 5‐methyltetrahydrofolate (5‐MTHF). Subjects homozygous for the 677C → T mutation in the MTHFR enzyme suffer from an increased cardiovascular risk. It can be speculated that the direct administration of 5‐MTHF instead of folic acid can facilitate the remethylation of homocysteine in methionine. The aim of this study was to determine the pharmacokinetic properties of orally administered 6[R,S] 5‐MTHF versus folic acid in cardiovascular patients with homozygosity for 677C → T MTHFR. This is an open‐controlled, two‐way, two‐period randomised crossover study. Patients received a single oral dose of either 5 mg folic acid or 5 mg 5‐MTHF in each period. The concentrations of the 6[S] 5‐MTHF and 6[R] 5‐MTHF diastereoisomers were determined in venous blood samples. All pharmacokinetic parameters demonstrate that the bioavailability of 5‐MTHF is higher compared to folic acid. The peak concentration of both isomers following the administration of 6[R,S] 5‐MTHF is almost seven times higher compared to folic acid, irrespective of the patient's genotype. However, at 1 week after the administration of a single dosage 6[R,S] 5‐MTHF, we detected 6[R] 5‐MTHF following the administration of folic acid, indicating storage of this isomer in the body. Our results demonstrate that oral 5‐MTHF has a different pharmacokinetic profile with a higher bioavailability compared to folic acid, irrespective of the patient's genotype. Detrimental effects of the storage of high levels of the non‐natural isomer 6[R] 5‐MTHF cannot be excluded. British Journal of Pharmacology (2004) 141, 825–830. doi:10.1038/sj.bjp.0705446
Laboratory assessment of folate (vitamin B9) status
Folate (vitamin B9) plays a crucial role in fundamental cellular processes, including nucleic acid biosynthesis, methyl group biogenesis and amino acid metabolism. The detection and correction of folate deficiency prevents megaloblastic anaemia and reduces the risk of neural tube defects. Coexisting deficiencies of folate and vitamin B12 are associated with cognitive decline, depression and neuropathy. Folate deficiency and excess has also been implicated in some cancers. Excessive exposure to folic acid, a synthetic compound used in supplements and fortified foods, has also been linked to adverse health effects. Of at least three distinct laboratory markers of folate status, it is the total abundance of folate in serum/plasma that is used by the majority of laboratories. The analysis of folate in red cells is also commonly performed. Since the folate content of red cells is fixed during erythropoiesis, this marker is indicative of folate status over the preceding ~4 months. Poor stability, variation in polyglutamate chain length and unreliable extraction from red cells are factors that make the analysis of folate challenging. The clinical use of measuring specific folate species has also been explored. 5-Methyltetrahydrofolate, the main form of folate found in blood, is essential for the vitamin B12-dependent methionine synthase mediated remethylation of homocysteine to methionine. As such, homocysteine measurement reflects cellular folate and vitamin B12 use. When interpreting homocysteine results, age, sex and pregnancy, specific reference ranges should be applied. The evaluation of folate status using combined markers of abundance and cellular use has been adopted by some laboratories. In the presence of discordance between laboratory results and strong clinical features of deficiency, treatment should not be delayed. High folate status should be followed up with the assessment of vitamin B12 status, a review of previous results and reassessment of folic acid supplementation regime.
Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011–2
Serum and erythrocyte (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured the serum folate forms (5-methyltetrahydrofolate (5-methylTHF), unmetabolised folic acid (UMFA), non-methyl folate (sum of tetrahydrofolate (THF), 5-formyltetrahydrofolate (5-formylTHF), 5,10-methenyltetrahydrofolate (5,10-methenylTHF)) and MeFox (5-methylTHF oxidation product)) by HPLC–MS/MS and RBC total folate by microbiologic assay in US population ≥ 1 year (n approximately 7500) participating in the National Health and Nutrition Examination Survey 2011–2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37·5 nmol/l; 100 %), UMFA (1·21 nmol/l; 99·9 %), MeFox (1·53 nmol/l; 98·8 %), and THF (1·01 nmol/l; 85·2 %) were mostly detectable. 5-FormylTHF (3·6 %) and 5,10-methenylTHF (4·4 %) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86·7 %); UMFA (4·0 %), non-methyl folate (4·7 %) and MeFox (4·5 %) contributed smaller amounts. Age was positively related to MeFox, but showed a U-shaped pattern for other folates. We generally noted sex and race/ethnic biomarker differences and weak (Spearman's r< 0·4) but significant (P< 0·05) correlations with physiological and lifestyle variables. Fasting, kidney function, smoking and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiological and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological characteristics.
One-carbon metabolites, B vitamins and associations with systemic inflammation and angiogenesis biomarkers among colorectal cancer patients: results from the ColoCare Study
B vitamins involved in one-carbon metabolism have been implicated in the development of inflammation- and angiogenesis-related chronic diseases, such as colorectal cancer (CRC). Yet, the role of one-carbon metabolism in inflammation and angiogenesis among CRC patients remains unclear. The objective of this study was to investigate associations of components of one-carbon metabolism with inflammation and angiogenesis biomarkers among newly diagnosed CRC patients ( n 238) in the prospective ColoCare Study, Heidelberg. We cross-sectionally analysed associations between twelve B vitamins and one-carbon metabolites and ten inflammation and angiogenesis biomarkers from pre-surgery serum samples using multivariable linear regression models. We further explored associations among novel biomarkers in these pathways with Spearman partial correlation analyses. We hypothesised that pyridoxal-5’-phosphate (PLP) is inversely associated with inflammatory biomarkers. We observed that PLP was inversely associated with C-reactive protein (CRP) ( r –0·33, P linear < 0·0001), serum amyloid A (SAA) ( r –0·23, P linear = 0·003), IL-6 ( r –0·39, P linear < 0·0001), IL-8 ( r –0·20, P linear = 0·02) and TNF α ( r –0·12, P linear = 0·045). Similar findings were observed for 5-methyl-tetrahydrofolate and CRP ( r –0·14), SAA ( r –0·14) and TNF α ( r –0·15) among CRC patients. Folate catabolite acetyl-para-aminobenzoylglutamic acid (pABG) was positively correlated with IL-6 ( r 0·27, P linear < 0·0001), and pABG was positively correlated with IL-8 ( r 0·21, P linear < 0·0001), indicating higher folate utilisation during inflammation. Our data support the hypothesis of inverse associations between PLP and inflammatory biomarkers among CRC patients. A better understanding of the role and inter-relation of PLP and other one-carbon metabolites with inflammatory processes among colorectal carcinogenesis and prognosis could identify targets for future dietary guidance for CRC patients.