Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,522
result(s) for
"Text analytics"
Sort by:
Text Analytics in Bulgarian: An Overview and Future Directions
by
Hristova, Gloria
in
Bulgarian text data
,
language resources development
,
natural language processing
2021
Text analytics is becoming an integral part of modern business and economic research and analysis. However, the extent to which its application is possible and accessible varies for different languages. The main goal of this paper is to outline fundamental research on text analytics applied on data in Bulgarian. A review of key research articles in two main directions is provided – development of language resources for Bulgarian and experimenting with Bulgarian text data in practical applications. By summarizing the results of a large literature review, we draw conclusions about the degree of development of the field, the availability of language resources for the Bulgarian language and the extent to which text analytics has been applied in practical problems. Future directions for research are outlined. To the best of the author’s knowledge, this is the first study providing a comprehensive overview of progress in the field of text analytics in Bulgarian.
Journal Article
Text Analytics in Bulgarian: An Overview and Future Directions
by
Hristova, Gloria
in
Bulgarian text data
,
language resources development
,
natural language processing
2021
Text analytics is becoming an integral part of modern business and economic research and analysis. However, the extent to which its application is possible and accessible varies for different languages. The main goal of this paper is to outline fundamental research on text analytics applied on data in Bulgarian. A review of key research articles in two main directions is provided – development of language resources for Bulgarian and experimenting with Bulgarian text data in practical applications. By summarizing the results of a large literature review, we draw conclusions about the degree of development of the field, the availability of language resources for the Bulgarian language and the extent to which text analytics has been applied in practical problems. Future directions for research are outlined. To the best of the author’s knowledge, this is the first study providing a comprehensive overview of progress in the field of text analytics in Bulgarian.
Journal Article
Business Intelligence and Analytics: From Big Data to Big Impact
by
Storey, Veda C.
,
Chen, Hsinchun
,
Chiang, Roger H. L.
in
Analytics
,
Betriebliches Informationssystem
,
Big data
2012
Business intelligence and analytics (BI&A) has emerged as an important area of study for both practitioners and researchers, reflecting the magnitude and impact of data-related problems to be solved in contemporary business organizations. This introduction to the MIS Quarterly Special Issue on Business Intelligence Research first provides a framework that identifles the evolution, applications, and emerging research areas of BI&A. BI& A 1.0, BI&A 2.0, and BI&A 3.0 are defined and described in terms of their key characteristics and capabilities. Current research in BI&A is analyzed and challenges and opportunities associated with BI&A research and education are identified. We also report a bibliometric study of critical BI&A publications, researchers, and research topics based on more than a decade of related academic and industry publications. Finally, the six articles that comprise this special issue are introduced and characterized in terms of the proposed BI&A research framework.
Journal Article
A Systematic Review Towards Big Data Analytics in Social Media
2022
The recent advancement in internet 2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies. This new era allows the consumer to directly connect with other individuals, business corporations, and the government. People are open to sharing opinions, views, and ideas on any topic in different formats out loud. This creates the opportunity to make the \"Big Social Data\" handy by implementing machine learning approaches and social data analytics. This study offers an overview of recent works in social media, data science, and machine learning to gain a wide perspective on social media big data analytics. We explain why social media data are significant elements of the improved data-driven decision-making process. We propose and build the \"Sunflower Model of Big Data\" to define big data and bring it up to date with technology by combining 5 V’s and 10 Bigs. We discover the top ten social data analytics to work in the domain of social media platforms. A comprehensive list of relevant statistical/machine learning methods to implement each of these big data analytics is discussed in this work. \"Text Analytics\" is the most used analytics in social data analysis to date. We create a taxonomy on social media analytics to meet the need and provide a clear understanding. Tools, techniques, and supporting data type are also discussed in this research work. As a result, researchers will have an easier time deciding which social data analytics would best suit their needs.
Journal Article
Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts
2013
Politics and political conflict often occur in the written and spoken word. Scholars have long recognized this, but the massive costs of analyzing even moderately sized collections of texts have hindered their use in political science research. Here lies the promise of automated text analysis: it substantially reduces the costs of analyzing large collections of text. We provide a guide to this exciting new area of research and show how, in many instances, the methods have already obtained part of their promise. But there are pitfalls to using automated methods—they are no substitute for careful thought and close reading and require extensive and problem-specific validation. We survey a wide range of new methods, provide guidance on how to validate the output of the models, and clarify misconceptions and errors in the literature. To conclude, we argue that for automated text methods to become a standard tool for political scientists, methodologists must contribute new methods and new methods of validation.
Journal Article
Big data text analytics: an enabler of knowledge management
2017
Purpose
The purpose of this paper is to examine the role of big data text analytics as an enabler of knowledge management (KM). The paper argues that big data text analytics represents an important means to visualise and analyse data, especially unstructured data, which have the potential to improve KM within organisations.
Design/methodology/approach
The study uses text analytics to review 196 articles published in two of the leading KM journals – Journal of Knowledge Management and Journal of Knowledge Management Research & Practice – in 2013 and 2014. The text analytics approach is used to process, extract and analyse the 196 papers to identify trends in terms of keywords, topics and keyword/topic clusters to show the utility of big data text analytics.
Findings
The findings show how big data text analytics can have a key enabler role in KM. Drawing on the 196 articles analysed, the paper shows the power of big data-oriented text analytics tools in supporting KM through the visualisation of data. In this way, the authors highlight the nature and quality of the knowledge generated through this method for efficient KM in developing a competitive advantage.
Research limitations/implications
The research has important implications concerning the role of big data text analytics in KM, and specifically the nature and quality of knowledge produced using text analytics. The authors use text analytics to exemplify the value of big data in the context of KM and highlight how future studies could develop and extend these findings in different contexts.
Practical implications
Results contribute to understanding the role of big data text analytics as a means to enhance the effectiveness of KM. The paper provides important insights that can be applied to different business functions, from supply chain management to marketing management to support KM, through the use of big data text analytics.
Originality/value
The study demonstrates the practical application of the big data tools for data visualisation, and, with it, improving KM.
Journal Article
Learning Analytics and Educational Data Mining in Practice: A Systematic Literature Review of Empirical Evidence
2014
This paper aims to provide the reader with a comprehensive background for understanding current knowledge on Learning Analytics (LA) and Educational Data Mining (EDM) and its impact on adaptive learning. It constitutes an overview of empirical evidence behind key objectives of the potential adoption of LA/EDM in generic educational strategic planning. We examined the literature on experimental case studies conducted in the domain during the past six years (2008-2013). Search terms identified 209 mature pieces of research work, but inclusion criteria limited the key studies to 40. We analyzed the research questions, methodology and findings of these published papers and categorized them accordingly. We used non-statistical methods to evaluate and interpret findings of the collected studies. The results have highlighted four distinct major directions of the LA/EDM empirical research. We discuss on the emerged added value of LA/EDM research and highlight the significance of further implications. Finally, we set our thoughts on possible uncharted key questions to investigate both from pedagogical and technical considerations.
Journal Article
Leveraging Financial Social Media Data for Corporate Fraud Detection
by
Zhang, Zhongju
,
Liao, Shaoyi
,
Dong, Wei
in
corporate fraud
,
financial social media
,
fraud detection
2018
Corporate fraud can lead to significant financial losses and cause immeasurable damage to investor confidence and the overall economy. Detection of such frauds is a time-consuming and challenging task. Traditionally, researchers have been relying on financial data and/or textual content from financial statements to detect corporate fraud. Guided by systemic functional linguistics (SFL) theory, we propose an analytic framework that taps into unstructured data from financial social media platforms to assess the risk of corporate fraud. We assemble a unique data set including 64 fraudulent firms and a matched sample of 64 nonfraudulent firms, as well as the social media data prior to the firm's alleged fraud violation in Accounting and Auditing Enforcement Releases (AAERs). Our framework automatically extracts signals such as sentiment features, emotion features, topic features, lexical features, and social network features, which are then fed into machine learning classifiers for fraud detection. We evaluate and compare the performance of our algorithm against baseline approaches using only financial ratios and language-based features respectively. We further validate the robustness of our algorithm by detecting leaked information and rumors, testing the algorithm on a new data set, and conducting an applicability check. Our results demonstrate the value of financial social media data and serve as a proof of concept of using such data to complement traditional fraud detection methods.
Journal Article
Measuring Customer Agility from Online Reviews Using Big Data Text Analytics
by
Fan, Weiguo
,
Yan, Xiangbin
,
Zhou, Shihao
in
Big data
,
customer agility
,
electronic word of mouth
2018
Large volumes of product reviews generated by online users have important strategic value for product development. Prior studies often focus on the influence of reviews on customers' purchasing decisions through the word-of-mouth effect. However, little is known about how product developers respond to these reviews. This study adopts a big data analytical approach to investigate the impact of online customer reviews on customer agility and subsequently product performance. We develop a singular value decomposition-based semantic keyword similarity method to quantify customer agility using large-scale customer review texts and product release notes. Using a mobile app data set with over 3 million online reviews, our empirical study finds that review volume has a curvilinear relationship with customer agility. Furthermore, customer agility has a curvilinear relationship with product performance. Our study contributes to innovation literature by demonstrating the influence of firms' capability of utilizing online customer reviews and its impact on product performance. It also helps reconcile inconsistencies found in literature regarding the relationships among the three constructs.
Journal Article
Impact of word embedding models on text analytics in deep learning environment: a review
2023
The selection of word embedding and deep learning models for better outcomes is vital. Word embeddings are an n-dimensional distributed representation of a text that attempts to capture the meanings of the words. Deep learning models utilize multiple computing layers to learn hierarchical representations of data. The word embedding technique represented by deep learning has received much attention. It is used in various natural language processing (NLP) applications, such as text classification, sentiment analysis, named entity recognition, topic modeling, etc. This paper reviews the representative methods of the most prominent word embedding and deep learning models. It presents an overview of recent research trends in NLP and a detailed understanding of how to use these models to achieve efficient results on text analytics tasks. The review summarizes, contrasts, and compares numerous word embedding and deep learning models and includes a list of prominent datasets, tools, APIs, and popular publications. A reference for selecting a suitable word embedding and deep learning approach is presented based on a comparative analysis of different techniques to perform text analytics tasks. This paper can serve as a quick reference for learning the basics, benefits, and challenges of various word representation approaches and deep learning models, with their application to text analytics and a future outlook on research. It can be concluded from the findings of this study that domain-specific word embedding and the long short term memory model can be employed to improve overall text analytics task performance.
Journal Article