Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "Textil och mode (generell)"
Sort by:
Statistical modelingand optimization of heterogeneousFenton‑like removal of organicpollutant using fibrous catalysts: a full factorial design
This work focuses on the optimization of heterogeneous Fenton-like removal of organic pollutant (dye) from water using newly developed fibrous catalysts based on a full factorial experimental design. This study aims to approximate the feasibility of heterogeneous Fenton-like removal process and optionally make predictions from this approximation in a form of statistical modeling. The fibrous catalysts were prepared by dispersing zerovalent iron nanoparticles on polyester fabrics (PET) before and after incorporation of either polyamidoamine (PAMAM, –NH2) dendrimer, 3-(aminopropyl) triethoxysilane (APTES, –Si–NH2) or thioglycerol (SH). The individual effect of two main factors [pH (X1) and concentration of hydrogen peroxide-[H2O2]μl (X2)] and their interactional effects on the removal process was determined at 95% confidence level by an L27 design. The results indicated that increasing the pH over 5 decreases the dye removal efficiency whereas the rise in [H2O2]μl until equilibrium point increases it. The principal effect of the type of catalysts (PET–NH2–Fe, PET–Si–NH2–Fe, and PET–SH–Fe) did not show any statistical significance. The factorial experiments demonstrated the existence of a significant synergistic interaction effect between the pH and [H2O2]μl as expressed by the values of the coefficient of interactions and analysis of variance (ANOVA). Finally, the functionalization of the resultant fibrous catalysts was validated by electrokinetic and X-ray photoelectron spectroscopy analysis. The optimization made from this study are of great importance for rational design and scaling up of fibrous catalyst for green chemistry and environmental applications.
Electrically conductive highly elastic polyamide/lycra fabric treated with PEDOT:PSS and polyurethane
Conductive elastic fabrics are desirable in wearable electronics and related applications. Highly elastic conductive polyamide/lycra knitted fabric was prepared using intrinsically conductive polymer poly (3,4-ethylenedioxythiophene) (PEDOT) blended with polyelectrolyte poly (styrene sulfonate) (PSS) using easily scalable coating and immersion methods. The effects of these two methods of treatments on uniformity, electromechanical property, stretchability, and durability were investigated. Different grades of waterborne polyurethanes (PU) were employed in different concentrations to improve the coating and adhesion of the PEDOT:PSS on the fabric. The immersion method gave better uniform treatment, high conductivity, and durability against stretching and cyclic tension than the coating process. The surface resistance increased from ~ 1.7 and ~ 6.4 Ω/square at 0% PU to ~ 3.7 and ~ 12.6 Ω/square at 50% PU for immersion and coating methods, respectively. The treatment methods as well as the acidic PEDOT:PSS did not affect the mechanical properties of the fabric and the fabric showed high strain at break of ~ 650% and remained conductive until break. Finally, to assess the practical applicability of the treated fabric for wearable e-textiles, the change in surface resistance was assessed by cyclically stretching 10 times at 100% strain and washing in a domestic laundry for 10 cycles. The resistance increased only by a small amount when samples were stretched cyclically at 100% strain, and the samples showed good durability against washing.
Exploring the nature of digital transformation in the fashion industry: opportunities for supply chains, business models, and sustainability-oriented innovations
This article provides a comprehensive overview of the digital transformation of the fashion industry and describes the opportunities and influences on supply chains, business models, and sustainability-oriented innovations that it offers. Desk research was performed to review emerging cases of companies that engage actively in using 3-dimensional virtual and digital (3DVD) technologies, such as 3D modeling, virtual and augmented reality (VR and AR), 2- and 3-dimensional (2D/3D) scanning, and digital twinning (DT). The analysis shows how the adoption of digital technologies provides opportunities to dematerialize the traditional fashion supply-chain model of garment production and distribution and maps the innovative shifts occurring in the fashion industry’s processes, products, and services. The adoption of 3DVD technologies by fashion companies unleashes new opportunities with respect to innovation in products/services and optimization of operational processes to streamline activities, shorten the lead time for designing, prototyping, manufacturing, marketing and retailing, and reorganizing the working phases. These capabilities also drive multicentred business-model innovations and thus affect value creation and delivery and capture changes. In addition, the analysis shows that digital transformation affects the four dimensions of sustainability that are interconnected intrinsically across supply-chain processes. Cultural sustainability is paramount, as fashion is a complex cultural system that is able to create products/services that influence the environment, economy, and society. In particular, 3DVD technologies promote cultural transformation of design processes to achieve a remix of skills and open knowledge, a behavioral shift from the consumer perspective in terms of diversity and self-expression, and a change in the organizational culture of companies that drive the digital transformation.
State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review
Bladder monitoring, including urinary incontinence management and bladder urinary volume monitoring, is a vital part of urological care. Urinary incontinence is a common medical condition affecting the quality of life of more than 420 million people worldwide, and bladder urinary volume is an important indicator to evaluate the function and health of the bladder. Previous studies on non-invasive techniques for urinary incontinence management technology, bladder activity and bladder urine volume monitoring have been conducted. This scoping review outlines the prevalence of bladder monitoring with a focus on recent developments in smart incontinence care wearable devices and the latest technologies for non-invasive bladder urine volume monitoring using ultrasound, optical and electrical bioimpedance techniques. The results found are promising and their application will improve the well-being of the population suffering from neurogenic dysfunction of the bladder and the management of urinary incontinence. The latest research advances in bladder urinary volume monitoring and urinary incontinence management have significantly improved existing market products and solutions and will enable the development of more effective future solutions.
Seamlessly integrated textile electrodes and conductive routing in a garment for electrostimulation: design, manufacturing and evaluation
Electro-stimulation to alleviate spasticity, pain and to increase mobility has been used successfully for years. Usually, gelled electrodes are used for this. In a garment intended for repeated use such electrodes must be replaced. The Mollii-suit by the company Inerventions utilises dry conductive rubber electrodes. The electrodes work satisfactory, but the garment is cumbersome to fit on the body. In this paper we show that knitted dry electrodes can be used instead. The knitted electrodes present a lower friction against the skin and a garment is easily fitted to the body. The fabric is stretchable and provides a tight fit to the body ensuring electrical contact. We present three candidate textrodes and show how we choose the one with most favourable features for producing the garment. We validate the performance of the garment by measuring three electrical parameters: rise time (10–90%) of the applied voltage, net injected charge and the low frequency value of the skin–electrode impedance. It is concluded that the use of flat knitting intarsia technique can produce a garment with seamlessly integrated conductive leads and electrodes and that this garment delivers energy to the body as targeted and is beneficial from manufacturing and comfort perspectives.
Stress, strain and deformation of poly-lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process
Although direct deposition of polymeric materials onto textiles through 3D printing is a great technique used more and more to develop smart textiles, one of the main challenges is to demonstrate equal or better mechanical resistance, durability and comfort than those of the textile substrates before deposition process. This article focuses on studying the impact of the textile properties and printing platform temperature on the tensile and deformations of non-conductive and conductive poly lactic acid (PLA) filaments deposited onto polyethylene terephthalate (PET) textiles through 3D printing process and optimizing them using theoretical and statistical models. The results demonstrate that the deposition process affects the tensile properties of the printed textile in comparison with the ones of the textiles. The stress and strain at rupture of the first 3D printed PLA layer deposited onto PET textile material reveal to be a combination of those of the printed layer and the PET fabric due to the lower flexibility and diffusion of the polymeric printed track through the textile fabric leading to a weak adhesion at the polymer/textile interface. Besides, printing platform temperature and textile properties influence the tensile and deformation properties of the 3D printed PLA on PET textile significantly. Both, the washing process and the incorporation of conductive fillers into the PLA do not affect the tensile properties of the extruded polymeric materials. The elastic, total and permanent deformations of the 3D-printed PLA on PET fabrics are lower than the ones of the fabric before polymer deposition which demonstrates a better dimensional stability, higher stiffness and lower flexibility of these materials.
Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell
Ioncell-F, a recently developed process for the production of man-made cellulosic fibers from ionic liquid solutions by dry-jet wet spinning, is presented as an alternative to the viscose and N-methylmorpholine N-oxide (NMMO)-based Lyocell processes. The ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate was identified as excellent cellulose solvent allowing for a rapid dissolution at moderate temperatures and subsequent shaping into continuous filaments. The highly oriented cellulose fibers obtained upon coagulation in cold water exhibited superior tenacity, exceeding that of commercial viscose and NMMO-based Lyocell (Tencel®) fibers. The respective staple fibers, which have been converted into two-ply yarn by ring spinning technology, presented very high tenacity. Furthermore, the Ioncell yarn showed very good behavior during the knitting and weaving processes, reflecting the quality of the produced yarn. The successfully knitted and woven garments from the Ioncell yarn demonstrate the suitability of this particular ionic liquid for the production of man-made cellulosic fibers and thus give a promising outlook for the future of the Ioncell-F process.
Smart Textile Technology for the Monitoring of Mental Health
In recent years, smart devices have proven their effectiveness in monitoring mental health issues and have played a crucial role in providing therapy. The ability to embed sensors in fabrics opens new horizons for mental healthcare, addressing the growing demand for innovative solutions in monitoring and therapy. The objective of this review is to understand mental health, its impact on the human body, and the latest advancements in the field of smart textiles (sensors, electrodes, and smart garments) for monitoring physiological signals such as respiration rate (RR), electroencephalogram (EEG), electrodermal activity (EDA), electrocardiogram (ECG), and cortisol, all of which are associated with mental health disorders. Databases such as Web of Science (WoS) and Scopus were used to identify studies that utilized smart textiles to monitor specific physiological parameters. Research indicates that smart textiles provide promising results compared to traditional methods, offering enhanced comfort for long-term monitoring.
Evolving capabilities of nonprofit organizations in circular used clothing supply chains
PurposeCircular supply chains (CSCs) have experienced significant transformations, reflecting shifts in consumer preferences, a growing emphasis on the circular economy and increasing regulatory pressures. In the used clothing sector, nonprofit organizations (NPOs) have traditionally managed CSCs, but growing competition from for-profit entities is driving NPOs to adopt profit-oriented models. This paper examines how NPOs transformed their CSC capabilities to navigate this shift.Design/methodology/approachThis study employs a case study approach to collect data from three NPOs, among Sweden’s largest operators of used clothing CSCs, each with distinct operational structures. The dynamic capability view guides the design of semi-structured interviews and data analysis.FindingsThis study identifies seven microfoundations of dynamic capabilities crucial for the competitive management of used clothing CSCs. These seven microfoundations emerged across four distinct levels representing employee, managerial, organizational and supply chain levels. These findings provide a holistic framework for understanding and enabling competitive capabilities in functioning used clothing CSCs.Originality/valueThis study offers empirical insights into maintaining efficiency and competitiveness in used clothing CSCs. Although the evidence is drawn from NPOs, the findings also apply to for-profits, as NPOs have shifted toward profit-driven models. Additionally, this study guides for-profit and policymakers by promoting collaboration with NPOs to achieve synergies. Finally, this study advances the dynamic capability view by introducing four levels at which capabilities arise and their importance for competitive CSC management.
Neuromuscular electrical stimulation in garments optimized for compliance
PurposePhysical inactivity is associated with muscle atrophy and venous thromboembolism, which may be prevented by neuromuscular electrical stimulation (NMES). This study aimed to investigate the effect on discomfort, current amplitude and energy consumption when varying the frequency and phase duration of low-intensity NMES (LI-NMES) via a sock with knitting-integrated transverse textile electrodes (TTE).MethodsOn eleven healthy participants (four females), calf-NMES via a TTE sock was applied with increasing intensity (mA) until ankle-plantar flexion at which point outcomes were compared when testing frequencies 1, 3, 10 and 36 Hz and phase durations 75, 150, 200, 300 and 400 µs. Discomfort was assessed with a numerical rating scale (NRS, 0–10) and energy consumption was calculated and expressed in milli-Joule (mJ). Significance set to p ≤ 0.05.Results1 Hz yielded a median (inter-quartile range) NRS of 2.4 (1.0–3.4), significantly lower than both 3 Hz with NRS 2.8 (1.8–4.2), and 10 Hz with NRS 3.4 (1.4–5.4) (both p ≤ .014). Each increase in tested frequency resulted in significantly higher energy consumption, e.g. 0.6 mJ (0.5–0.8) for 1 Hz vs 14.9 mJ (12.3–21.2) for 36 Hz (p = .003). Longer phase durations had no significant effect on discomfort despite generally requiring significantly lower current amplitudes. Phase durations 150, 200 and 400 µs required significantly lower energy consumption compared to 75 µs (all p ≤ .037).ConclusionLI-NMES applied via a TTE sock produces a relevant plantar flexion of the ankle with the best comfort and lowest energy consumption using 1 Hz and phase durations 150, 200 or 400 µs.