Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,066 result(s) for "Th17 response"
Sort by:
mRNA Vaccines against SARS-CoV-2: Advantages and Caveats
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer–BioNTech and Moderna developed updated bivalent vaccines—Comirnaty and Spikevax—to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.
Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
Autophagy is a cell biological pathway affecting immune responses. In vitro, autophagy acts as a cell-autonomous defense against Mycobacterium tuberculosis , but its role in vivo is unknown. Here we show that autophagy plays a dual role against tuberculosis: antibacterial and anti-inflammatory. M . tuberculosis infection of Atg5 ᶠˡ/ᶠˡ LysM-Cre ⁺ mice relative to autophagy-proficient littermates resulted in increased bacillary burden and excessive pulmonary inflammation characterized by neutrophil infiltration and IL-17 response with increased IL-1α levels. Macrophages from uninfected Atg5 ᶠˡ/ᶠˡ LysM-Cre ⁺ mice displayed a cell-autonomous IL-1α hypersecretion phenotype, whereas T cells showed propensity toward IL-17 polarization during nonspecific activation or upon restimulation with mycobacterial antigens. Thus, autophagy acts in vivo by suppressing both M . tuberculosis growth and damaging inflammation.
The Role of Th17 Response in COVID-19
COVID-19 is an acute infectious disease of the respiratory system caused by infection with the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Coronavirus 2). Transmission of SARS-CoV-2 infections occurs through droplets and contaminated objects. A rapid and well-coordinated immune system response is the first line of defense in a viral infection. However, a disturbed and over-activated immune response may be counterproductive, causing damage to the body. Severely ill patients hospitalised with COVID-19 exhibit increased levels of many cytokines, including Interleukin (IL)-1β, IL-2, IL-6, IL-7, IL-8, IL-10, IL-17, granulocyte colony stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF). Increasing evidence suggests that Th17 cells play an important role in the pathogenesis of COVID-19, not only by activating cytokine cascade but also by inducing Th2 responses, inhibiting Th1 differentiation and suppressing Treg cells. This review focuses on a Th17 pathway in the course of the immune response in COVID-19, and explores plausible targets for therapeutic intervention.
Peptide ES15-1 derived from Haemonchus contortus promotes goat Th17 response by regulating the STAT3/RORγt pathway
Th17 cells play important roles in anti-infective responses. The 15 kDa excretory/secretory protein of Haemonchus contortus (HcES-15) has been identified as a promising immune-protective antigen against H. contortus infection capable of up-regulating IL-17, IL-4 and IL-10 production. To obtain the peptides that primarily induce the Th17 immune response, we amplified and expressed the peptides ES15-1, ES15-2 and ES15-3 from HcES-15. In vitro studies demonstrated that ES15-1 stimulated transcriptional activation of the STAT3/RORγt signaling pathway and induced IL-17 production in goat peripheral blood mononuclear cells (PBMCs). In vivo studies, flow cytometric analysis revealed that subcutaneous injection of PLGA-encapsulated ES15-1 peptide (PLGA-ES15-1, 50 μg) significantly enhanced Th17 cell differentiation in the spleens of BALB/c mouse. Consistent with these findings, ELISA quantification demonstrated that ES15-1 treatment significantly increased serum levels of pro-inflammatory cytokine (IL-17, IL-1, IL-6, and TNF-α). In goat immune protection studies, goats ( n  = 6) were subcutaneously immunized with 500 μg of PLGA-ES15-1 on days 0 and 14, followed by infection with H. contortus infective third-stage larvae (iL3s) 1 week post-second immunization. ES15-1 significantly enhanced serum levels of pro-inflammatory cytokines (IL-17, IL-1, IL-6, TNF-α). At autopsy, vaccinated goats exhibited 69.0% ( p  < 0.001) reduction of fecal egg counts (FEC) and 50.54% ( p  < 0.05) reduction of worm burdens versus controls. Our findings suggested that peptide ES15-1 enhanced Th17 responses through regulation of the STAT3/RORγt pathway, conferring a certain immune protection against H. contortus infection.
Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice
Background With the increase in production and use of engineered nanoparticles (NP; ≤ 100 nm), safety concerns have risen about the potential health effects of occupational or environmental NP exposure. Results of animal toxicology studies suggest that inhalation of NP may cause pulmonary injury with subsequent acute or chronic inflammation. People with chronic respiratory diseases like asthma or allergic rhinitis may be even more susceptible to toxic effects of inhaled NP. Few studies, however, have investigated adverse effects of inhaled NP that may enhance the development of allergic airway disease. Methods We investigated the potential of polyethylene glycol coated amorphous silica NP (SNP; 90 nm diameter) to promote allergic airway disease when co-exposed during sensitization with an allergen. BALB/c mice were sensitized by intranasal instillation with 0.02% ovalbumin (OVA; allergen) or saline (control), and co-exposed to 0, 10, 100, or 400 μg of SNP. OVA-sensitized mice were then challenged intranasally with 0.5% OVA 14 and 15 days after sensitization, and all animals were sacrificed a day after the last OVA challenge. Blood and bronchoalveolar lavage fluid (BALF) were collected, and pulmonary tissue was processed for histopathology and biochemical and molecular analyses. Results Co-exposure to SNP during OVA sensitization caused a dose-dependent enhancement of allergic airway disease upon challenge with OVA alone. This adjuvant-like effect was manifested by significantly greater OVA-specific serum IgE, airway eosinophil infiltration, mucous cell metaplasia, and Th2 and Th17 cytokine gene and protein expression, as compared to mice that were sensitized to OVA without SNP. In saline controls, SNP exposure did cause a moderate increase in airway neutrophils at the highest doses. Conclusions These results suggest that airway exposure to engineered SNP could enhance allergen sensitization and foster greater manifestation of allergic airway disease upon secondary allergen exposures. Whereas SNP caused innate immune responses at high doses in non-allergic mice, the adjuvant effects of SNP were found at lower doses in allergic mice and were Th2/Th17 related. In conclusion, these findings in mice suggest that individuals exposed to SNP might be more prone to manifest allergic airway disease, due to adjuvant-like properties of SNP.
Pretreatment with an antibiotics cocktail enhances the protective effect of probiotics by regulating SCFA metabolism and Th1/Th2/Th17 cell immune responses
Background Probiotics are a potentially effective therapy for inflammatory bowel disease (IBD); IBD is linked to impaired gut microbiota and intestinal immunity. However, the utilization of an antibiotic cocktail (Abx) prior to the probiotic intervention remains controversial. This study aims to identify the effect of Abx pretreatment from dextran sulfate sodium (DSS)-induced colitis and to evaluate whether Abx pretreatment has an enhanced effect on the protection of Clostridium butyricum Miyairi588 (CBM) from colitis. Results The inflammation, dysbiosis, and dysfunction of gut microbiota as well as T cell response were both enhanced by Abx pretreatment. Additionally, CBM significantly alleviated the DSS-induced colitis and impaired gut epithelial barrier, and Abx pretreatment could enhance these protective effects. Furthermore, CBM increased the benefit bacteria abundance and short-chain fatty acids (SCFAs) level with Abx pretreatment. CBM intervention after Abx pretreatment regulated the imbalance of cytokines and transcription factors, which corresponded to lower infiltration of Th1 and Th17 cells, and increased Th2 cells. Conclusions Abx pretreatment reinforced the function of CBM in ameliorating inflammation and barrier damage by increasing beneficial taxa, eliminating pathogens, and inducing a protective Th2 cell response. This study reveals a link between Abx pretreatment, microbiota, and immune response changes in colitis, which provides a reference for the further application of Abx pretreatment before microbiota-based intervention.
4-Octyl Itaconate Inhibits Proinflammatory Cytokine Production in Behcet’s Uveitis and Experimental Autoimmune Uveitis
Abstract4-octyl itaconate (4-OI) is an anti-inflammatory metabolite that activates the nuclear-factor-E2-related factor 2 (NRF2) signaling. In the current work, we investigated whether 4-OI could affect the production of proinflammatory cytokines in Behcet’s uveitis (BU) and experimental autoimmune uveitis (EAU). Peripheral blood mononuclear cells (PBMCs) of active BU patients and healthy individuals with in vitro 4-OI treatment were performed to assess the influence of 4-OI on the proinflammatory cytokine production. EAU was induced and used for investigating the influence of 4-OI on the proinflammatory cytokine production in vivo. The flow cytometry, qPCR, and ELISA were performed to detect proinflammatory cytokine expression. NRF2 signaling activation was evaluated by qPCR and western blotting (WB). Splenic lymphocyte transcriptome was performed by RNA sequencing. The NRF2 expression by BU patients-derived PBMCs was lower than that by healthy individuals. After treatment with 4-OI, the proportion of Th17 cells, along with the expression of proinflammatory cytokines (IL-17, TNF-α, MCP-1, and IL-6) by PBMCs, were downregulated, and anti-inflammatory cytokine (IL-10) expression was upregulated, although IFN-γ expression was unaffected. The EAU severity was ameliorated by 4-OI in association with a lower splenic Th1/Th17 cell proportion and increased nuclear NRF2 expression. Additionally, 4-OI downregulated a set of 248 genes, which were enriched in pathways of positive regulation of immune responses. The present study shows an inhibitory effect of 4-OI on the proinflammatory cytokine production in active BU patients and EAU mice, possibly mediated through activating NRF2 signaling. These findings suggest that 4-OI could act as a potential therapeutic drug for the treatment and prevention of BU in the future study.
Recognition of conserved antigens by Th17 cells provides broad protection against pulmonary Haemophilus influenzae infection
Nontypeable Haemophilus influenzae (NTHi) is a major cause of community acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. A current effort in NTHi vaccine development has focused on generating humoral responses and has been greatly impeded by antigenic variation among the numerous circulating NTHi strains. In this study, we showed that pulmonary immunization of mice with killed NTHi generated broad protection against lung infection by different strains. While passive transfer of immune antibodies protected only against the homologous strain, transfer of immune T cells conferred protection against both homologous and heterologous strains. Further characterization revealed a strong Th17 response that was cross-reactive with different NTHi strains. Responding Th17 cells recognized both cytosolic and membrane-associated antigens, while immune antibodies preferentially responded to surface antigens and were highly strain specific. We further identified several conserved proteins recognized by lung Th17 cells during NTHi infection. Two proteins yielding the strongest responses were tested as vaccine candidates by immunization of mice with purified proteins plus an adjuvant. Immunization induced antigen-specific Th17 cells that recognized different strains and, upon adoptive transfer, conferred protection. Furthermore, immunized mice were protected against challenge with not only NTHi strains but also a fully virulent, encapsulated strain. Together, these results show that the immune mechanism of cross-protection against pneumonia involves Th17 cells, which respond to a broad spectrum of antigens, including those that are highly conserved among NTHi strains. These mechanistic insights suggest that inclusion of Th17 antigens in subunit vaccines offers the advantage of inducing broad protection and complements the current antibody-based approaches.
The role of GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals in Th17 responses counteracted by PPARγ agonists
Peroxisome proliferator-activated receptor gamma (PPARγ) has the ability to counter Th17 responses, but the full mechanisms remain elusive. Herein, we aimed to elucidate this process in view of cellular metabolism, especially glutaminolysis. MTT, CCK-8, Annexin V-FITC/PI staining or trypan blue exclusion assays were used to analyze cytotoxicity. Flow cytometry and Q-PCR assays were applied to determine Th17 responses. The detection of metabolite levels using commercial kits and rate-limiting enzyme expression using western blotting assays was performed to illustrate the metabolic activity. ChIP assays were used to examine H3K4me3 modifications. Mouse models of dextran sulfate sodium (DSS)-induced colitis and house dust mite (HDM)/lipopolysaccharide (LPS)-induced asthma were established to confirm the mechanisms studied . The PPARγ agonists rosiglitazone and pioglitazone blocked glutaminolysis but not glycolysis under Th17-skewing conditions, as indicated by the detection of intracellular lactate and α-KG and the fluorescence ratios of BCECF-AM. The PPARγ agonists prevented the utilization of glutamine and thus directly limited Th17 responses even when Foxp3 was deficient. The mechanisms were ascribed to restricted conversion of glutamine to glutamate by reducing the expression of the rate-limiting enzyme GLS1, which was confirmed by GLS1 overexpression. Replenishment of α-KG and 2-HG but not succinate weakened the effects of PPARγ agonists, and α-KG-promoted Th17 responses were dampened by siIDH1/2. Inhibition of KDM5 but not KDM4/6 restrained the inhibitory effect of PPARγ agonists on IL-17A expression, and the H3K4me3 level in the promoter and CNS2 region of the gene locus down-regulated by PPARγ agonists was rescued by 2-HG and GLS1 overexpression. However, the limitation of PPARγ agonists on the mRNA expression of RORγt was unable to be stopped by 2-HG but was attributed to GSH/ROS signals subsequent to GLS1. The exact role of PPARγ was proved by GW9662 or PPARγ knockout, and the mechanisms for PPARγ-inhibited Th17 responses were further confirmed by GLS1 overexpression . PPARγ agonists repressed Th17 responses by counteracting GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals, which is beneficial for Th17 cell-related immune dysregulation.