Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
186
result(s) for
"Thrombospondin-1"
Sort by:
Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling
by
Shin, Seung Jae
,
Ohtsuki, Sumio
,
Nguyen, Tram Anh Vu
in
Actin
,
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
2020
The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix–cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvβ1 to establish focal adhesions and promotes nuclear shuttling of Yesassociated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin β1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.
Journal Article
Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood–brain barrier impairment
by
Ottens, Andrew K.
,
Bishop, Lindsey
,
Muldoon, Pretal P.
in
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
,
Administration, Inhalation
,
Animals
2017
Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 μg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 μm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.
Journal Article
Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1
by
Dannenberg, Andrew J.
,
Lee, Sharrell
,
Rayes, Tina El
in
Animals
,
Biological Sciences
,
Blotting, Western
2015
Inflammation is inextricably associated with primary tumor progression. However, the contribution of inflammation to tumor outgrowth in metastatic organs has remained underexplored. Here, we show that extrinsic inflammation in the lungs leads to the recruitment of bone marrow-derived neutrophils, which degranulate azurophilic granules to release the Ser proteases, elastase and cathepsin G, resulting in the proteolytic destruction of the antitumorigenic factor thrombospondin-1 (Tsp-1). Genetic ablation of these neutrophil proteases protected Tsp-1 from degradation and suppressed lung metastasis. These results provide mechanistic insights into the contribution of inflammatory neutrophils to metastasis and highlight the unique neutrophil protease–Tsp-1 axis as a potential antimetastatic therapeutic target.
Journal Article
Decreased thrombospondin-1 impairs endometrial stromal decidualization in unexplained recurrent spontaneous abortion
2024
Inappropriate endometrial stromal decidualization has been implied as an important reason of many pregnancy-related complications, such as unexplained recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. Here, we observed that thrombospondin-1, an adhesive glycoprotein, was significantly downregulated in endometrial decidual cells from patients with unexplained recurrent spontaneous abortion. The immortalized human endometrial stromal cell line was used to investigate the possible THBS1-mediated regulation of decidualization. In vitro experiments found that the expression level of THBS1 increased with the normal decidualization process. Knockdown of THBS1 could decrease the expression levels of prolactin and insulin-like growth factor binding protein-1, two acknowledged human decidualization markers, whereas THBS1 overexpression could reverse these effects. The RNA sequencing results demonstrated that the extracellular regulated protein kinases signaling pathway was potentially affected by the knockdown of THBS1. We further confirmed that the regulation of THBS1 on decidualization was achieved through the ERK signaling pathway by the treatment of inhibitors. Moreover, knockdown of THBS1 in pregnant mice could impair decidualization and result in an increased fetus resorption rate. Altogether, our study demonstrated a crucial role of THBS1 in the pathophysiological process of unexplained recurrent spontaneous abortion and provided some new insights into the research of pregnancy-related complications.
Decreased THBS1 impairs endometrial stromal decidualization through the ERK signaling pathway in URSA.
Graphical Abstract
Graphical Abstract
Journal Article
Thrombospondin-1 CD47 Signalling: From Mechanisms to Medicine
by
Kale, Atharva
,
Rogers, Natasha M.
,
Ghimire, Kedar
in
Adipocytes
,
Bacterial infections
,
Cardiovascular disease
2021
Recent advances provide evidence that the cellular signalling pathway comprising the ligand-receptor duo of thrombospondin-1 (TSP1) and CD47 is involved in mediating a range of diseases affecting renal, vascular, and metabolic function, as well as cancer. In several instances, research has barely progressed past pre-clinical animal models of disease and early phase 1 clinical trials, while for cancers, anti-CD47 therapy has emerged from phase 2 clinical trials in humans as a crucial adjuvant therapeutic agent. This has important implications for interventions that seek to capitalize on targeting this pathway in diseases where TSP1 and/or CD47 play a role. Despite substantial progress made in our understanding of this pathway in malignant and cardiovascular disease, knowledge and translational gaps remain regarding the role of this pathway in kidney and metabolic diseases, limiting identification of putative drug targets and development of effective treatments. This review considers recent advances reported in the field of TSP1-CD47 signalling, focusing on several aspects including enzymatic production, receptor function, interacting partners, localization of signalling, matrix-cellular and cell-to-cell cross talk. The potential impact that these newly described mechanisms have on health, with a particular focus on renal and metabolic disease, is also discussed.
Journal Article
Integration of pro- and anti-angiogenic signals by endothelial cells
2018
Angiogenesis or neovascularization is a complex multi-step physiological process that occurs throughout life both in normal tissues and in disease. It is tightly regulated by the balance between pro-angiogenic and anti-angiogenic factors. The angiogenic switch has been identified as the key step during tumor progression in which the balance between pro-angiogenic and anti-angiogenic factors leans toward pro-angiogenic stimuli promoting the progression of tumors from dormancy to dysplasia and ultimately malignancy. This event can be described as either the outcome of a genetic event occurring in cancer cells themselves, or the positive and negative cross-talk between tumor-associated endothelial cells and other cellular components of the tumor microenvironment. In recent years, the mechanisms underlying the angiogenic switch have been extensively investigated in particular to identify therapeutic targets that can lead to development of effective therapies. In this review, we will discuss the current findings on the regulatory pathways in endothelial cells that are involved in the angiogenic switch with an emphasis on the role of anti-angiogenic protein, thrombospondin-1 (TSP-1) and pro-angiogenic factor, vascular endothelial growth factor (VEGF).
Journal Article
Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors
by
Jain, Rakesh K
,
Chauhan, Vikash P
,
Krane, Stephen
in
Analysis of Variance
,
angiotensin II
,
Animals
2011
The dense collagen network in tumors significantly reduces the penetration and efficacy of nanotherapeutics. We tested whether losartan—a clinically approved angiotensin II receptor antagonist with noted antifibrotic activity—can enhance the penetration and efficacy of nanomedicine. We found that losartan inhibited collagen I production by carcinoma-associated fibroblasts isolated from breast cancer biopsies. Additionally, it led to a dose-dependent reduction in stromal collagen in desmoplastic models of human breast, pancreatic, and skin tumors in mice. Furthermore, losartan improved the distribution and therapeutic efficacy of intratumorally injected oncolytic herpes simplex viruses. Finally, it also enhanced the efficacy of i.v. injected pegylated liposomal doxorubicin (Doxil). Thus, losartan has the potential to enhance the efficacy of nanotherapeutics in patients with desmoplastic tumors.
Journal Article
Aging‐associated changes in CD47 arrangement and interaction with thrombospondin‐1 on red blood cells visualized by super‐resolution imaging
2020
CD47 serves as a ligand for signaling regulatory protein α (SIRPα) and as a receptor for thrombospondin‐1 (TSP‐1). Although CD47, TSP‐1, and SIRPα are thought to be involved in the clearance of aged red blood cells (RBCs), aging‐associated changes in the expression and interaction of these molecules on RBCs have been elusive. Using direct stochastic optical reconstruction microscopy (dSTORM)‐based imaging and quantitative analysis, we can report that CD47 molecules on young RBCs reside as nanoclusters with little binding to TSP‐1, suggesting a minimal role for TSP‐1/CD47 signaling in normal RBCs. On aged RBCs, CD47 molecules decreased in number but formed bigger and denser clusters, with increased ability to bind TSP‐1. Exposure of aged RBCs to TSP‐1 resulted in a further increase in the size of CD47 clusters via a lipid raft‐dependent mechanism. Furthermore, CD47 cluster formation was dramatically inhibited on thbs1−/− mouse RBCs and associated with a significantly prolonged RBC lifespan. These results indicate that the strength of CD47 binding to its ligand TSP‐1 is predominantly determined by the distribution pattern and not the amount of CD47 molecules on RBCs, and offer direct evidence for the role of TSP‐1 in phagocytosis of aged RBCs. This study provides clear nanoscale pictures of aging‐associated changes in CD47 distribution and TSP‐1/CD47 interaction on the cell surface, and insights into the molecular basis for how these molecules coordinate to remove aged RBCs. On young RBCs (Top), CD47 molecules reside as nanoclusters with minimal binding to TSP‐1 trimmers. On aged RBCs (Bottom), CD47 proteins form bigger and denser clusters and gain increased ability to bind TSP‐1, thus promoting phagocytosis of aged RBCs.
Journal Article
miR‐195 reduces age‐related blood–brain barrier leakage caused by thrombospondin‐1‐mediated selective autophagy
2020
Blood–brain barrier (BBB) disruption contributes to neurodegenerative diseases. Loss of tight junction (TJ) proteins in cerebral endothelial cells (ECs) is a leading cause of BBB breakdown. We recently reported that miR‐195 provides vasoprotection, which urges us to explore the role of miR‐195 in BBB integrity. Here, we found cerebral miR‐195 levels decreased with age, and BBB leakage was significantly increased in miR‐195 knockout mice. Furthermore, exosomes from miR‐195‐enriched astrocytes increased endothelial TJ proteins and improved BBB integrity. To decipher how miR‐195 promoted BBB integrity, we first demonstrated that TJ proteins were metabolized via autophagic–lysosomal pathway and the autophagic adaptor p62 was necessary to promote TJ protein degradation in cerebral ECs. Next, proteomic analysis of exosomes revealed miR‐195‐suppressed thrombospondin‐1 (TSP1) as a major contributor to BBB disruption. Moreover, TSP1 was demonstrated to activate selective autophagy of TJ proteins by increasing the formation of claudin‐5‐p62 and ZO1‐p62 complexes in cerebral ECs while TSP1 impaired general autophagy. Delivering TSP1 antibody into the circulation showed dose‐dependent reduction of BBB leakage by 20%–40% in 25‐month‐old mice. Intravenous or intracerebroventricular injection of miR‐195 rescued TSP1‐induced BBB leakage. Dementia patients with BBB damage had higher levels of serum TSP1 compared to those without BBB damage (p = 0.0015), while the normal subjects had the lowest TSP1 (p < 0.0001). Taken together, the study implies that TSP1‐regulated selective autophagy facilitates the degradation of TJ proteins and weakens BBB integrity. An adequate level of miR‐195 can suppress the autophagy–lysosome pathway via a reduction of TSP1, which may be important for maintaining BBB function. The present study revealed that thrombospondin‐1 (TSP1) is a key factor for BBB leakage and miR‐195 protects BBB integrity. We showed that cerebral miR‐195 reduces with age and blood‐brain barrier (BBB) leakage is increased in miR‐195 knockout mice. miR‐195‐regulated thrombospondin‐1 impairs BBB via selective autophagy of tight junctions. Furthermore, circulating TSP1 was higher in BBB‐damaged patients, which implied TSP1 as a new biomarker of BBB damage.
Journal Article
Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately?
2022
Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.
Journal Article