Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,523
result(s) for
"Thyrotropin - metabolism"
Sort by:
Thyrotrophin in the pars tuberalis triggers photoperiodic response
by
Takagi, Tsuyoshi
,
Yasuo, Shinobu
,
Kageyama, Saburo
in
Animal behavior
,
Animal breeding
,
Animal reproduction
2008
Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase,
DIO2
) in the mediobasal hypothalamus (MBH) of the Japanese quail (
Coturnix japonica
) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) β-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of
DIO2
. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of
DIO2
which was shown to be mediated through a TSH receptor–cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.
Spring in their step
In spring, many animals start to become reproductively active. They are generally responding to the longer day lengths at this time of the year, but the molecular pathways that mediate the response are not fully understood. Experiments in the Japanese quail, a well established model for studying photoperiodism, have identified the expression of the thyroid-stimulating hormone thyrotrophin in the pars tuberalis, part of the anterior lobe of the pituitary gland, as a critical event in triggering this photoperiodic response. Two waves of gene expression are involved, the first at about 14 hours after dawn on the first 'long' day, and a second a few hours later.
This paper examines the changes in gene expression during the first exposure to a long day (such as those found in spring) in Japanese quails and find that two waves of genes are induced as part of the photoperiodic response. This paper also identifies thyrotrophin expression in the pars tuberalis as a critical event in triggering this photoperiodic response.
Journal Article
Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice
by
Marais, Richard
,
Kimura, Shioko
,
Liao, Xiao-Hui
in
animal models
,
Animals
,
Biological Sciences
2011
Mutations of BRAF are found in ~45% of papillary thyroid cancers and are enriched in tumors with more aggressive properties. We developed mice with a thyroid-specific knock-in of oncogenic Braf (LSL-BrafV⁶⁰⁰E/TPO-Cre) to explore the role of endogenous expression of this oncoprotein on tumor initiation and progression. In contrast to other Braf-induced mouse models of tumorigenesis (i.e., melanomas and lung), in which knock-in of BrafV⁶⁰⁰E induces mostly benign lesions, Braf-expressing thyrocytes become transformed and progress to invasive carcinomas with a very short latency, a process that is dampened by treatment with an allosteric MEK inhibitor. These mice also become profoundly hypothyroid due to deregulation of genes involved in thyroid hormone biosynthesis and consequently have high TSH levels. To determine whether TSH signaling cooperates with oncogenic Braf in this process, we first crossed LSL-BrafV⁶⁰⁰E/TPO-Cre with TshR knockout mice. Although oncogenic Braf was appropriately activated in thyroid follicular cells of these mice, they had a lower mitotic index and were not transformed. Thyroid-specific deletion of the Gsα gene in LSL-BrafV⁶⁰⁰E/TPO-Cre/Gnas-E1fl/fl mice also resulted in an attenuated cancer phenotype, indicating that the cooperation of TshR with oncogenic Braf is mediated in part by cAMP signaling. Once tumors were established in mice with wild-type TshR, suppression of TSH did not revert the phenotype. These data demonstrate the key role of TSH signaling in Braf-induced papillary thyroid cancer initiation and provide experimental support for recent observations in humans pointing to a strong association between TSH levels and thyroid cancer incidence.
Journal Article
Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders
2018
The key proteins responsible for hormone synthesis in the thyroid are glycosylated. Oligosaccharides strongly affect the function of glycosylated proteins. Both thyroid-stimulating hormone (TSH) secreted by the pituitary gland and TSH receptors on the surface of thyrocytes contain N-glycans, which are crucial to their proper activity. Thyroglobulin (Tg), the protein backbone for synthesis of thyroid hormones, is a heavily N-glycosylated protein, containing 20 putative N-glycosylated sites. N-oligosaccharides play a role in Tg transport into the follicular lumen, where thyroid hormones are produced, and into thyrocytes, where hyposialylated Tg is degraded. N-glycans of the cell membrane transporters sodium/iodide symporter and pendrin are necessary for iodide transport. Some changes in glycosylation result in abnormal activity of the thyroid and alteration of the metabolic clearance rate of hormones. Alteration of glycan structures is a pathological process related to the progression of chronic diseases such as thyroid cancers and autoimmunity. Thyroid carcinogenesis is accompanied by changes in sialylation and fucosylation, β1,6-branching of glycans, the content and structure of poly-LacNAc chains, as well as O-GlcNAcylation, while in thyroid autoimmunity the main processes affected are sialylation and fucosylation. The glycobiology of the thyroid gland is an intensively studied field of research, providing new data helpful in understanding the role of the sugar component in thyroid protein biology and disorders.
Journal Article
Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats
by
Pechalnova, Alena S.
,
Morina, Irina Y.
,
Derkach, Kira V.
in
Agonists
,
Allosteric Regulation - drug effects
,
Animals
2025
The approaches to correct thyroid deficiency include replacement therapy with thyroid hormones (THs), but such therapy causes a number of side effects. A possible alternative is thyroid-stimulating hormone (TSH) receptor activators, including allosteric agonists. The aim of this work was to study the effect of ethyl-2-(4-(4-(5-amino-6-(tert-butylcarbamoyl)-2-(methylthio)thieno[2,3-d]pyrimidin-4-yl)phenyl)-1H-1,2,3-triazol-1-yl) acetate (TPY3m), a TSH receptor allosteric agonist developed by us, on basal and thyroliberin (TRH)-stimulated TH levels and the hypothalamic-pituitary-thyroid (HPT) axis in male rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes mellitus (T2DM). Single and three-day administration of TPY3m (i.p., 20 mg/kg) was studied, and the effect of TPY3m on the HPT axis was compared with that of levothyroxine. TPY3m increased TH levels when administered to both healthy and diabetic rats, normalizing thyroxine and triiodothyronine levels in T2DM and, unlike levothyroxine, without negatively affecting TSH levels or the expression of hypothalamic and pituitary genes responsible for TSH production. TPY3m pretreatment preserved the stimulatory effects of TRH on TH levels and thyroid gene expression. This indicates the absence of competition between TPY3m and endogenous TSH for TSH receptor activation and is supported by our in vitro results on TPY3m- and TSH-stimulated adenylate cyclase activity in rat thyroid membranes. Morphological analysis of thyroid glands in diabetic rats after three-day TPY3m administration shows an increase in its functional activity without destructive changes. To summarize, TPY3m, with the activity of a partial allosteric agonist of the TSH receptor, was created as a prototype of drugs to correct thyroid insufficiency in T2DM.
Journal Article
Computational model of the full-length TSH receptor
by
Mezei, Mihaly
,
Latif, Rauf
,
Davies, Terry F
in
Artificial Intelligence
,
Autoantibodies
,
Computer applications
2022
(GPCR)The receptor for TSH receptor (TSHR), a G protein coupled receptor (GPCR), is of particular interest as the primary antigen in autoimmune hyperthyroidism (Graves’ disease) caused by stimulating TSHR antibodies. To date, only one domain of the extracellular region of the TSHR has been crystallized. We have run a 1000 ns molecular dynamic simulation on a model of the entire TSHR generated by merging the extracellular region of the receptor, obtained using artificial intelligence, with our recent homology model of the transmembrane domain, embedded it in a lipid membrane and solvated it with water and counterions. The simulations showed that the structure of the transmembrane and leucine-rich domains were remarkably constant while the linker region (LR), known more commonly as the ‘hinge region,’ showed significant flexibility, forming several transient secondary structural elements. Furthermore, the relative orientation of the leucine-rich domain with the rest of the receptor was also seen to be variable. These data suggest that this LR is an intrinsically disordered protein. Furthermore, preliminary data simulating the full TSHR model complexed with its ligand (TSH) showed that (a) there is a strong affinity between the LR and TSH ligand and (b) the association of the LR and the TSH ligand reduces the structural fluctuations in the LR. This full-length model illustrates the importance of the LR in responding to ligand binding and lays the foundation for studies of pathologic TSHR autoantibodies complexed with the TSHR to give further insight into their interaction with the flexible LR.
Journal Article
AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver
by
Liu, Shudong
,
Jing, Fei
,
Zhao, Jiajun
in
Activation
,
Adenosine
,
Aminoimidazole Carboxamide - analogs & derivatives
2015
Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH).
Journal Article
Sinomenine Hydrochloride Promotes TSHR-Dependent Redifferentiation in Papillary Thyroid Cancer
2022
Radioactive iodine (RAI) plays an important role in the diagnosis and treatment of papillary thyroid cancer (PTC). The curative effects of RAI therapy are not only related to radiosensitivity but also closely related to the accumulation of radionuclides in the lesion in PTC. Sinomenine hydrochloride (SH) can suppress tumor growth and increase radiosensitivity in several tumor cells, including PTC. The aim of this research was to investigate the therapeutic potential of SH on PTC cell redifferentiation. In this study, we treated BCPAP and TPC-1 cells with SH and tested the expression of thyroid differentiation-related genes. RAI uptake caused by SH-pretreatment was also evaluated. The results indicate that 4 mM SH significantly inhibited proliferation and increased the expression of the thyroid iodine-handling gene compared with the control group (p < 0.005), including the sodium/iodide symporter (NIS). Furthermore, SH also upregulated the membrane localization of NIS and RAI uptake. We further verified that upregulation of NIS was associated with the activation of the thyroid-stimulating hormone receptor (TSHR)/cyclic adenosine monophosphate (cAMP) signaling pathway. In conclusion, SH can inhibit proliferation, induce apoptosis, promote redifferentiation, and then increase the efficacy of RAI therapy in PTC cells. Thus, our results suggest that SH could be useful as an adjuvant therapy in combination with RAI therapy in PTC.
Journal Article
Role of thyroid stimulating hormone in the maintenance and functioning of the human corpus luteum
2024
Purpose
To evaluate the impact of high thyroid stimulating hormone (TSH) levels on human granulosa–luteal (hGL) cells.
Methods
hGL cells were isolated from follicular aspirates derived from patients undergoing IVF treatment without any thyroid disorder (serum TSH 0.5–2 mU/L). Cells were cultured at 37 °C in DMEM, supplemented with 5% FBS. The cells were treated with 1 nM LH and increasing concentrations of TSH. At the end of culture, conditioned medium and cells were collected to analyze progesterone production, cell viability, and mRNA levels of genes involved in the steroidogenesis process. Human ovarian tissues were analyzed for TSH receptor (TSHR) expression by IHC.
Results
The expression of TSHR was detected in human corpus luteum by IHC and in hGL by RT-PCR. In hGL cells, TSH treatment did not modulate progesterone production nor the expression of steroidogenic genes, such as p450scc and HSD3b 1/2. However, TSH induced a dose-dependent increase in cell death. Finally, TSH did not affect LH-induced
p450scc
and
HSD3b1/2
expression while LH partially reverted TSH negative effect on cell death in hGL.
Conclusions
Elevated TSH levels in hypothyroid women may be associated with impaired CL functioning and maintenance. These findings open a new line of research for the importance of the treatment of women with thyroid dysfunction that could contribute to the onset of infertility.
Journal Article
Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton
2013
Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosisrelated fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr-/- (homozygote) or Tshr+/- (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates Tnfα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels.
Journal Article
TSH Receptor and Thyroid-Specific Gene Expression in Human Skin
by
Marchioni, Enrico
,
Persechino, Severino
,
Teson, Massimo
in
Autoantibodies - blood
,
Autoantigens - genetics
,
Autoantigens - immunology
2010
Experimental evidence suggests that in autoimmune thyroid diseases (AITDs) the skin is a target of autoantibodies against thyroid-specific antigens; however, the role of these autoantibodies in skin alterations remains unclear. To gain insight into the function of nominally thyroid-specific genes in skin, we analyzed the expression of thyroid-stimulating hormone–receptor (TSH-R), thyroglobulin (Tg), sodium iodide symporter (NIS), and thyroperoxidase (TPO) genes in normal human skin biopsies and cultured primary keratinocytes and dermal fibroblasts. The results revealed the presence of all the transcripts in skin biopsies. However, in keratinocytes and fibroblasts, only TSH-R messenger RNA was always detected. Western blot and immunohistochemical analyses of skin specimens confirmed the presence of TSH-R protein in keratinocytes and fibroblasts. Moreover, TSH treatment induced the proliferation of cultured keratinocytes and fibroblasts and increased keratinocyte intracellular cAMP. Finally, affinity-purified IgGs from serum of patients affected by Graves’ disease, but not by chronic lymphocytic thyroiditis, stimulated cAMP accumulation in cultured keratinocytes, as well as their proliferation. In conclusion, the expression of thyroid-specific genes in cultured keratinocytes and fibroblasts and the mitogenic effects of TSH and IgGs on these cells support the concept that autoantibodies against thyroid-specific antigens may contribute to cutaneous symptoms in AITDs.
JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://network.nature.com/group/jidclub
Journal Article