Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,828 result(s) for "Ticks - physiology"
Sort by:
A fluorescently-tagged tick kinin neuropeptide triggers peristalsis and labels tick midgut muscles
Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus , activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.
Mapping ticks and tick-borne pathogens in China
Understanding ecological niches of major tick species and prevalent tick-borne pathogens is crucial for efficient surveillance and control of tick-borne diseases. Here we provide an up-to-date review on the spatial distributions of ticks and tick-borne pathogens in China. We map at the county level 124 tick species, 103 tick-borne agents, and human cases infected with 29 species (subspecies) of tick-borne pathogens that were reported in China during 1950−2018. Haemaphysalis longicornis is found to harbor the highest variety of tick-borne agents, followed by Ixodes persulcatus , Dermacentor nutalli and Rhipicephalus microplus . Using a machine learning algorithm, we assess ecoclimatic and socioenvironmental drivers for the distributions of 19 predominant vector ticks and two tick-borne pathogens associated with the highest disease burden. The model-predicted suitable habitats for the 19 tick species are 14‒476% larger in size than the geographic areas where these species were detected, indicating severe under-detection. Tick species harboring pathogens of imminent threats to public health should be prioritized for more active field surveillance. Ticks are an important vector of disease in China, posing threats to humans, livestock and wild animals. Here, Zhao et al. compile a database of the distributions of the 124 tick species known in China and 103 tick-borne pathogens and predict the additional suitable habitats for the predominant vector species.
The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.
The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission
Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the , and genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) , and bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.
Ticks
Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.
The global importance of ticks
Ticks and tick-borne diseases affect animal and human health worldwide and are the cause of significant economic losses. Approximately 10% of the currently known 867 tick species act as vectors of a broad range of pathogens of domestic animals and humans and are also responsible for damage directly due to their feeding behaviour. The most important tick species and the effects they cause are listed. The impact on the global economy is considered to be high and although some estimates are given, there is a lack of reliable data. The impact of ticks and tick-borne diseases on animal production and public health and their control are discussed.
Tick borne relapsing fever - a systematic review and analysis of the literature
Tick borne relapsing fever (TBRF) is a zoonosis caused by various Borrelia species transmitted to humans by both soft-bodied and (more recently recognized) hard-bodied ticks. In recent years, molecular diagnostic techniques have allowed to extend our knowledge on the global epidemiological picture of this neglected disease. Nevertheless, due to the patchy occurrence of the disease and the lack of large clinical studies, the knowledge on several clinical aspects of the disease remains limited. In order to shed light on some of these aspects, we have systematically reviewed the literature on TBRF and summarized the existing data on epidemiology and clinical aspects of the disease. Publications were identified by using a predefined search strategy on electronic databases and a subsequent review of the reference lists of the obtained publications. All publications reporting patients with a confirmed diagnosis of TBRF published in English, French, Italian, German, and Hungarian were included. Maps showing the epidemiogeographic mosaic of the different TBRF Borrelia species were compiled and data on clinical aspects of TBRF were analysed. The epidemiogeographic mosaic of TBRF is complex and still continues to evolve. Ticks harbouring TBRF Borrelia have been reported worldwide, with the exception of Antarctica and Australia. Although only molecular diagnostic methods allow for species identification, microscopy remains the diagnostic gold standard in most clinical settings. The most suggestive symptom in TBRF is the eponymous relapsing fever (present in 100% of the cases). Thrombocytopenia is the most suggestive laboratory finding in TBRF. Neurological complications are frequent in TBRF. Treatment is with beta-lactams, tetracyclines or macrolids. The risk of Jarisch-Herxheimer reaction (JHR) appears to be lower in TBRF (19.3%) compared to louse-borne relapsing fever (LBRF) (55.8%). The overall case fatality rate of TBRF (6.5%) and LBRF (4–10.2%) appears to not differ. Unlike LBRF, where perinatal fatalities are primarily attributable to abortion, TBRF-related perinatal fatalities appear to primarily affect newborns.
Migration, Prospecting, Dispersal? What Host Movement Matters for Infectious Agent Circulation?
Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host–parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.
Emerging Tick-Borne Viruses in the Twenty-First Century
Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified.