Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5,673 result(s) for "Tight Junctions"
Sort by:
Regulation of intestinal epithelial permeability by tight junctions
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37
Background Airway epithelial barrier function is maintained by the formation of tight junctions (TJs) and adherens junctions (AJs). Inhalation of cigarette smoke causes airway epithelial barrier dysfunction and may contribute to the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). We assessed the effects of cigarette smoke on barrier function and expression of multiple TJ and AJ proteins in the bronchial epithelium. We also examined whether treatment with glucocorticosteroids (GCSs), long-acting β 2 -agonists (LABAs), and human cathelicidin LL-37 can protect against cigarette smoke extract (CSE)-induced barrier dysfunction. Methods Calu-3 cells cultured at the air-liquid interface were pretreated with or without GCSs, LABAs, GCSs plus LABAs, or LL-37, and subsequently exposed to CSE. Barrier function was assessed by transepithelial electronic resistance (TEER) measurements. Gene and protein expression levels of TJ and AJ proteins were analyzed by quantitative PCR and western blotting, respectively. Immunofluorescence staining of TJ and AJ proteins was performed. Results CSE decreased TEER and increased permeability in a concentration-dependent manner. CSE suppressed gene expression of claudin-1, claudin-3, claudin-4, claudin-7, claudin-15, occludin, E-cadherin, junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) within 12 h post-CSE exposure, while suppressed protein expression levels of occludin at 12 h. CSE-treated cells exhibited discontinuous or attenuated immunostaining for claudin-1, claudin-3, claudin-4, occludin, ZO-1, and E-cadherin compared with untreated cells. GCS treatment partially restored CSE-induced TEER reduction, while LABA treatment had no effect. GCS and LABA combination treatment had no additive effect on CSE-induced TEER reduction and gene suppression of TJ and AJ proteins. Human cathelicidin LL-37 counteracted CSE-induced TEER reduction and prevented disruption of occludin and ZO-1. LL-37 also attenuated CSE-induced decreases in gene and protein expression levels of occludin. Conclusions CSE caused airway epithelial barrier dysfunction and simultaneously downregulated multiple TJ and AJ proteins. GCS and LABA combination treatment had no additive effect on CSE-induced TEER reduction. LL-37 counteracted CSE-induced TEER reduction and prevented disruption of occludin and ZO-1. Use of LL-37 to counteract airway epithelial barrier dysfunction may have significant benefits for respiratory diseases such as asthma and COPD.
Paracellular permeability and tight junction regulation in gut health and disease
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.Increased intestinal permeability owing to tight junction barrier loss could be targeted in gastrointestinal diseases associated with increased permeability. In this Review, the authors discuss the molecular components and regulation of the tight junction, and consider the relevance to gut diseases and therapeutic opportunities.
Potential for Tight Junction Protein–Directed Drug Development Using Claudin Binders and Angubindin-1
The tight junction (TJ) is an intercellular sealing component found in epithelial and endothelial tissues that regulates the passage of solutes across the paracellular space. Research examining the biology of TJs has revealed that they are complex biochemical structures constructed from a range of proteins including claudins, occludin, tricellulin, angulins and junctional adhesion molecules. The transient disruption of the barrier function of TJs to open the paracellular space is one means of enhancing mucosal and transdermal drug absorption and to deliver drugs across the blood–brain barrier. However, the disruption of TJs can also open the paracellular space to harmful xenobiotics and pathogens. To address this issue, the strategies targeting TJ proteins have been developed to loosen TJs in a size- or tissue-dependent manner rather than to disrupt them. As several TJ proteins are overexpressed in malignant tumors and in the inflamed intestinal tract, and are present in cells and epithelia conjoined with the mucosa-associated lymphoid immune tissue, these TJ-protein-targeted strategies may also provide platforms for the development of novel therapies and vaccines. Here, this paper reviews two TJ-protein-targeted technologies, claudin binders and an angulin binder, and their applications in drug development.
Tight junction proteins at the blood–brain barrier: far more than claudin-5
At the blood–brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.
Tight junctions: from simple barriers to multifunctional molecular gates
Key Points Tight junctions are intercellular adhesion complexes in epithelia and endothelia that control paracellular permeability. This paracellular diffusion barrier is semipermeable: it is size- and charge-selective. Paracellular ion permeability at tight junctions is largely determined by their claudin composition. Claudins are a family of transmembrane proteins that are thought to form gated ion-selective paracellular pores through the paracellular diffusion barrier. Tight junctions form the border between the apical and basolateral cell surface domains in polarized epithelia, and support the maintenance of cell polarity by restricting intermixing of apical and basolateral transmembrane components. Tight junctions are an integral component of the evolutionarily conserved signalling mechanisms that control epithelial-cell polarization and the formation of morphologically and functionally distinct apical domains. Tight junctions form bidirectional signalling platforms that receive signals from the cell interior, which regulate their assembly and function, and that transduce signals to the cell interior to control cell proliferation, migration, differentiation and survival. Tight junctions are part of an interconnected network of adhesion complexes that also includes adherens junctions and focal adhesions. These adhesion complexes crosstalk through direct protein–protein interactions as well as by transmitting signals to each other that influence their assembly and function. Tight junctions are barriers between epithelial and endothelial cells that regulate the diffusion of molecules across tissues; they also contribute to cell polarity and serve as signalling platforms. Recent findings have broadened our understanding of tight junction organization, assembly and function. Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.
Dual microglia effects on blood brain barrier permeability induced by systemic inflammation
Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood–brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions. Although it is known that microglia respond to injury and systemic disease in the brain, it is unclear if they modulate blood–brain barrier (BBB) integrity, which is critical for regulating neuroinflammatory responses. Here authors demonstrate that microglia respond to inflammation by migrating towards and accumulating around cerebral vessels, where they initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 before switching, during sustained inflammation, to phagocytically remove astrocytic end-feet resulting in impaired BBB function
Claudin-2 Knockout by TALEN-Mediated Gene Targeting in MDCK Cells: Claudin-2 Independently Determines the Leaky Property of Tight Junctions in MDCK Cells
Tight junctions (TJs) regulate the movements of substances through the paracellular pathway, and claudins are major determinants of TJ permeability. Claudin-2 forms high conductive cation pores in TJs. The suppression of claudin-2 expression by RNA interference in Madin-Darby canine kidney (MDCK) II cells (a low-resistance strain of MDCK cells) was shown to induce a three-fold increase in transepithelial electrical resistance (TER), which, however, was still lower than in high-resistance strains of MDCK cells. Because RNA interference-mediated knockdown is not complete and only reduces gene function, we considered the possibility that the remaining claudin-2 expression in the knockdown study caused the lower TER in claudin-2 knockdown cells. Therefore, we investigated the effects of claudin-2 knockout in MDCK II cells by establishing claudin-2 knockout clones using transcription activator-like effector nucleases (TALENs), a recently developed genome editing method for gene knockout. Surprisingly, claudin-2 knockout increased TER by more than 50-fold in MDCK II cells, and TER values in these cells (3000-4000 Ω·cm2) were comparable to those in the high-resistance strains of MDCK cells. Claudin-2 re-expression restored the TER of claudin-2 knockout cells dependent upon claudin-2 protein levels. In addition, we investigated the localization of claudin-1, -2, -3, -4, and -7 at TJs between control MDCK cells and their respective knockout cells using their TALENs. Claudin-2 and -7 were less efficiently localized at TJs between control and their knockout cells. Our results indicate that claudin-2 independently determines the 'leaky' property of TJs in MDCK II cells and suggest the importance of knockout analysis in cultured cells.
Brain endothelial GSDMD activation mediates inflammatory BBB breakdown
The blood–brain barrier (BBB) protects the central nervous system from infections or harmful substances 1 ; its impairment can lead to or exacerbate various diseases of the central nervous system 2 – 4 . However, the mechanisms of BBB disruption during infection and inflammatory conditions 5 , 6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7 – 9 ), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP–CD14 LPS transfer and internalization pathway 10 – 12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4 -humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment. Lipopolysaccharide-induced breakdown of the blood–brain barrier requires activation of GSDMD-mediated plasma membrane permeabilization and pyroptosis in brain endothelial cells.
Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis
Gut microbial dysbiosis is associated with the development of autoimmune disease, but the mechanisms by which microbial dysbiosis affects the transition from asymptomatic autoimmunity to inflammatory disease are incompletely characterized. Here, we identify intestinal barrier integrity as an important checkpoint in translating autoimmunity to inflammation. Zonulin family peptide (zonulin), a potent regulator for intestinal tight junctions, is highly expressed in autoimmune mice and humans and can be used to predict transition from autoimmunity to inflammatory arthritis. Increased serum zonulin levels are accompanied by a leaky intestinal barrier, dysbiosis and inflammation. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate or a cannabinoid type 1 receptor agonist inhibits the development of arthritis. Moreover, treatment with the zonulin antagonist larazotide acetate, which specifically increases intestinal barrier integrity, effectively reduces arthritis onset. These data identify a preventive approach for the onset of autoimmune disease by specifically targeting impaired intestinal barrier function. Intestinal dysbiosis is associated with an ever-growing list of autoimmune diseases. Here the authors show that both mice and humans with autoimmune arthritis can have dysbiosis and barrier leakiness prior to major signs of inflammatory arthritis, and treatment of mice with a zonulin antagonist can limit collagen-induced arthritis.