Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
11,179
result(s) for
"Time-series analysis Mathematical models."
Sort by:
Time series analysis for social sciences
\"Time-series, or longitudinal, data are ubiquitous in the social sciences. Unfortunately, analysts often treat the time-series properties of their data as a nuisance rather than a substantively meaningful dynamic process to be modeled and interpreted. Time-Series Analysis for Social Sciences provides accessible, up-to-date instruction and examples of the core methods in time-series econometrics.\"--Provided by publisher.
Applied Time Series Econometrics
2004,2006,2009
Time series econometrics is a rapidly evolving field. Particularly, the cointegration revolution has had a substantial impact on applied analysis. Hence, no textbook has managed to cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out, reminding the reader of the ideas underlying them and giving sufficient background for empirical work. The treatment can also be used as a textbook for a course on applied time series econometrics. Topics include: unit root and cointegration analysis, structural vector autoregressions, conditional heteroskedasticity and nonlinear and nonparametric time series models. Crucial to empirical work is the software that is available for analysis. New methodology is typically only gradually incorporated into existing software packages. Therefore a flexible Java interface has been created, allowing readers to replicate the applications and conduct their own analyses.
Economic Time Series
by
Holan, Scott H.
,
McElroy, Tucker
,
Bell, William R.
in
Econometrics
,
Economic analysis
,
Economic models
2012,2018
This book is a focused resource on the analysis of economic time series as it pertains to modeling and seasonality. It presents cutting-edge research that would otherwise be scattered throughout diverse peer-reviewed journals. This compilation of 21 chapters showcases the cross-fertilization between the fields of time series modeling and seasonal adjustment, as is reflected both in the contents of the chapters and in their authorship, with contributors coming from academia and government statistical agencies.
Dynamic Models for Volatility and Heavy Tails
2013
The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
Option pricing and estimation of financial models with r
A practical text for calibrating financial models and numerical option pricing featuring R, Option Pricing and Estimation of Financial Models With R distills inference and simulation of stochastic process in the field of model calibration for financial times series modeled with continuous time processes and numerical option pricing.
Growth curve modeling
2013,2014
Features recent trends and advances in the theory and techniques used to accurately measure and model growth
Growth Curve Modeling: Theory and Applications features an accessible introduction to growth curve modeling and addresses how to monitor the change in variables over time since there is no \"one size fits all\" approach to growth measurement. A review of the requisite mathematics for growth modeling and the statistical techniques needed for estimating growth models are provided, and an overview of popular growth curves, such as linear, logarithmic, reciprocal, logistic, Gompertz, Weibull, negative exponential, and log-logistic, among others, is included.
In addition, the book discusses key application areas including economic, plant, population, forest, and firm growth and is suitable as a resource for assessing recent growth modeling trends in the medical field. SAS® is utilized throughout to analyze and model growth curves, aiding readers in estimating specialized growth rates and curves. Including derivations of virtually all of the major growth curves and models, Growth Curve Modeling: Theory and Applications also features:
• Statistical distribution analysis as it pertains to growth modeling
• Trend estimations
• Dynamic site equations obtained from growth models
• Nonlinear regression
• Yield-density curves
• Nonlinear mixed effects models for repeated measurements data
Growth Curve Modeling: Theory and Applications is an excellent resource for statisticians, public health analysts, biologists, botanists, economists, and demographers who require a modern review of statistical methods for modeling growth curves and analyzing longitudinal data. The book is also useful for upper-undergraduate and graduate courses on growth modeling.
Time series : theory and methods
by
Brockwell, P. J. (Peter J.)
,
Davis, R. A. (Richard A.)
in
Econometrics
,
Mathematical statistics
,
Mathematics and Statistics
2006,1991,2009
This paperback edition is a reprint of the 1991 edition. Time Series: Theory and Methods is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time. The aim is to provide specific techniques for handling data and at the same time to provide a thorough understanding of the mathematical basis for the techniques. Both time and frequency domain methods are discussed, but the book is written in such a way that either approach could be emphasized. The book is intended to be a text for graduate students in statistics, mathematics, engineering, and the natural or social sciences. It contains substantial chapters on multivariate series and state-space models (including applications of the Kalman recursions to missing-value problems) and shorter accounts of special topics including long-range dependence, infinite variance processes, and nonlinear models. Most of the programs used in the book are available in the modeling package ITSM2000, the student version of which can be downloaded from http://www.stat.colostate.edu/~pjbrock/student06.