Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
584 result(s) for "Togas."
Sort by:
The toga and Roman identity
\"This book traces the toga's history from its origins in the Etruscan garment known as the tebenna, through its use as an everyday garment in the Republican period to its increasingly exclusive role as a symbol of privilege in the Principate and its decline in use in late antiquity. It aims to shift the scholarly view of the toga from one dominated by its role as a feature of Roman art to one in which it is seen as an everyday object and a highly charged symbol that in its various forms was central to the definition and negotiation of important gender, age and status boundaries, as well as political stances and ideologies. It discusses the toga's significance not just in Rome itself, but also in the provinces, where it reveals ideas about cultural identity, status and the role of the Roman state. The Toga and Roman Identity shows that, by looking in detail at the history of Rome's national garment, we can gain a better understanding of the complexities of Roman identity for different groups in society, as well as what it meant, at any given time, to be 'Roman'\"-- Provided by publisher.
Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height
An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution.The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.
Dynamic Mapping of Human Cortical Development during Childhood through Early Adulthood
We report the dynamic anatomical sequence of human cortical gray matter development between the age of 4-21 years using quantitative four-dimensional maps and time-lapse sequences. Thirteen healthy children for whom anatomic brain MRI scans were obtained every 2 years, for 8-10 years, were studied. By using models of the cortical surface and sulcal landmarks and a statistical model for gray matter density, human cortical development could be visualized across the age range in a spatiotemporally detailed time-lapse sequence. The resulting time-lapse \"movies\" reveal that (i) higher-order association cortices mature only after lower-order somatosensory and visual cortices, the functions of which they integrate, are developed, and (ii) phylogenetically older brain areas mature earlier than newer ones. Direct comparison with normal cortical development may help understanding of some neurodevelopmental disorders such as childhood-onset schizophrenia or autism.
The MJO and Air–Sea Interaction in TOGA COARE and DYNAMO
Dynamics of the Madden–Julian Oscillation (DYNAMO) and Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) observations and reanalysis-based surface flux products are used to test theories of atmosphere–ocean interaction that explain the Madden–Julian oscillation (MJO). Negative intraseasonal outgoing longwave radiation, indicating deep convective clouds, is in phase with increased surface wind stress, decreased solar heating, and increased surface turbulent heat flux—mostly evaporation—from the ocean to the atmosphere. Net heat flux cools the upper ocean in the convective phase. Sea surface temperature (SST) warms during the suppressed phase, reaching a maximum before the onset of MJO convection. The timing of convection, surface flux, and SST is consistent from the central Indian Ocean (70°E) to the western Pacific Ocean (160°E). Mean surface evaporation observed in TOGA COARE and DYNAMO (110 W m−1) accounts for about half of the moisture supply for the mean precipitation (210 W m−2for DYNAMO). Precipitation maxima are an order of magnitude larger than evaporation anomalies, requiring moisture convergence in the mean, and on intraseasonal and daily time scales. Column-integrated moisture increases 2 cm before the convectively active phase over the Research Vessel (R/V)Roger Revellein DYNAMO, in accordance with MJO moisture recharge theory. Local surface evaporation does not significantly recharge the column water budget before convection. As suggested in moisture mode theories, evaporation increases the moist static energy of the column during convection. Rather than simply discharging moisture from the column, the strongest daily precipitation anomalies in the convectively active phase accompany the increasing column moisture.
AN UNNOTICED GLADIATORIAL PUN IN SUETONIUS
The text of Suetonius, Caligula 35.3 does not make perfect sense as it stands. Perhaps it conceals a pun, the expression calcata lacinia meaning both \"the lappet of his toga having been trod upon\" and \"his gladiatorial group having been scorned\".
Thermodynamic Response of a High-Resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux Parameterization: Case Study for the Bay of Bengal (BoB)
This study analyzes the thermodynamic response of an ocean model to two different flux parameterizations. We compared two experiments, a control run (CR) with the flux formulation proposed by Kara et al. [Journal of Atmospheric and Oceanic Technology, 17(10):1421–1438, 2000] with relative wind effect, and an experimental run (ER) with the Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment version 3.0 [COARE3.0, Fairall et al. (J Geophys Res Oceans 101(C1):1295–1308, 1996; J Geophys Res Oceans, 101(C2):3747–3764; J Clim 16(4):571–591, 2003)] flux algorithm in the tropical Indian Ocean. Both experiments are performed for the period 2014–2017. The model is forced with daily analyzed fields of winds, radiation and freshwater fluxes from ERA-Interim. The performance of the CR and ER with respect to in situ and satellite observations is examined for the year 2015 in the Bay of Bengal (BoB). COARE3.0 weakens the surface wind stress by ~ 20% and increases the basin-averaged net heat flux by ~ 14%, and makes the sea surface temperature (SST) warmer by around 0.3–0.9 °C in the BoB in the ER. SST simulations were compared with observations, which revealed that in the ER, the SST errors were reduced by 5–40%, and errors in the temperature profile were significantly reduced by ~ 10 to 40% up to a depth of 80 m. BoB heat budget analysis showed that COARE3.0 significantly increased the upper ocean heat content, caused by a reduction in meridional heat transport across the 10° N latitude. This reduction in meridional heat transport is attributed to the reduced strength of upper ocean circulation resulting in the weakening of meridional volume transport (~ 25%). These findings indicate that COARE3.0 derived fluxes better simulate upper ocean thermal structure in the BoB.
A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital form, we embarked upon a program in 1992 to develop a four-dimensional probabilistic atlas and reference system for the human brain. Through an International Consortium for Brain Mapping (ICBM) a dataset is being collected that includes 7000 subjects between the ages of eighteen and ninety years and including 342 mono- and dizygotic twins. Data on each subject includes detailed demographic, clinical, behavioural and imaging information. DNA has been collected for genotyping from 5800 subjects. A component of the programme uses post-mortem tissue to determine the probabilistic distribution of microscopic cyto- and chemoarchitectural regions in the human brain. This, combined with macroscopic information about structure and function derived from subjects in vivo, provides the first large scale opportunity to gain meaningful insights into the concordance or discordance in micro- and macroscopic structure and function. The philosophy, strategy, algorithm development, data acquisition techniques and validation methods are described in this report along with database structures. Examples of results are described for the normal adult human brain as well as examples in patients with Alzheimer's disease and multiple sclerosis. The ability to quantify the variance of the human brain as a function of age in a large population of subjects for whom data is also available about their genetic composition and behaviour will allow for the first assessment of cerebral genotype-phenotype-behavioural correlations in humans to take place in a population this large. This approach and its application should provide new insights and opportunities for investigators interested in basic neuroscience, clinical diagnostics and the evaluation of neuropsychiatric disorders in patients.
An overview of sea state conditions and air-sea fluxes during RaDyO
Refining radiative‐transfer modeling capabilities for light transmission through the sea surface requires a more detailed prescription of the sea surface roughness beyond the probability density function of the sea surface slope field. To meet this need, exciting new measurement methodologies now provide the opportunity to enhance present knowledge of sea surface roughness, especially at the microscale. In this context, two intensive field experiments using R/PFloating Instrument Platformwere staged within the Office of Naval Research's Radiance in a Dynamic Ocean (RaDyO) field program in the Santa Barbara Channel and in the central Pacific Ocean south of Hawaii. As part of this program, our team gathered and analyzed a comprehensive suite of sea surface roughness measurements designed to provide optimal coverage of fundamental optical distortion processes associated with the air‐sea interface. This contribution describes the ensemble of instrumentation deployed. It provides a detailed documentation of the ambient environmental conditions that prevailed during the RaDyO field experiments. It also highlights exciting new sea surface roughness measurement capabilities that underpin a number of the scientific advances resulting from the RaDyO program. For instance, a new polarimetric imaging camera highlights the complex interplay of wind and surface currents in shaping the roughness of the sea surface that suggests the traditional Cox‐Munk framework is not sufficient. In addition, the breaking crest length spectral density derived from visible and infrared imagery is shown to be modulated by the development of the wavefield (wave age) and alignment of wind and surface currents at the intermediate (dominant) scale of wave breaking. Key Points First high‐resolution measurements of short ocean waves by imaging polarimetry Ocean currents play a strong role in influencing mean squared wave slope Breaking crest length spectral densities attenuate at small scales
A TOGA RETROSPECTIVE
The Tropical Ocean Global Atmosphere (TOGA) program was a 10-year international climate research effort carried out between 1985 and 1994 under the auspices of the World Climate Research Programme (WCRP). TOGA's goals were to determine the predictability of the coupled ocean-atmosphere system in the tropics on seasonal-to-interannual time scales, to understand the mechanisms responsible for that predictability, and to establish an observing system to support climate prediction. The US contribution to TOGA focused mainly on the El Niño/Southern Oscillation (ENSO) phenomenon, which is the most prominent climate signal on seasonal-to-interannual time scales. One of TOGA's great strengths was that it forged the three fields of observation, theory, and modeling into a coherent program. TOGA also included climate impact studies from the very beginning by collaborating with scientists outside the field of physical climate research. This article highlights some key successes of TOGA and assesses its legacy from a perspective of progress over the past 15 years. It also celebrates the fiftieth anniversary of the Intergovernmental Oceanographic Commission (IOC), established within the United Nations Educational, Scientific and Cultural Organization to promote international cooperation in marine research, services, and observations. IOC, together with the World Meteorological Organization and the International Council of Science, co-sponsored not only TOGA, but also antecedent and follow-on climate research programs under WCRP. The continuity of these research programs over the time span of decades is one of the reasons for their long-term successes.
Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data
A bulk aerodynamic algorithm is developed for all stability conditions for the computation of ocean surface fluxes. It provides roughness lengths of wind, humidity, and temperature for a wind speed range from 0 to 18 m   s − 1 : z o = 0.013 u * 2 / g + 0.11 v / u * and ln ( z o / z ot ) = ln ( z o / z oq ) = 2.67 Re * 1 / 4 − 2.57 as derived using the Tropical Oceans Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE) data constrained by other observations under high wind conditions. Using the TOGA COARE ship data and the multiyear hourly TOGA Tropical Atmosphere–Ocean moored buoy data, intercomparison of six different algorithms, which are widely used in research, operational forecasting, and data reanalysis, shows that algorithms differ significantly in heat and momentum fluxes under both very weak and very strong wind conditions, but agree with each other under moderate wind conditions. Algorithms agree better for wind stress than for heat fluxes. Based on past observations, probable deficiencies in roughness lengths (or neutral exchange coefficients) of some of the algorithms are identified along with possible solutions, and significant issues (particularly the trend of the neutral exchange coefficient for heat with wind speed under strong wind conditions) are raised for future experiments. The vapor pressure reduction of 2% over saline seawater has a significant impact on the computation of surface latent heat flux under strong wind conditions and should be considered in any bulk aerodynamic algorithm.