Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
26,451 result(s) for "Toll-like receptors"
Sort by:
Toll-like receptors 1, 2, 4, 5, and 6 in gastric cancer
Toll-like receptors (TLRs) are expressed on both immune cells and tumor cells, triggering both anti-tumor and pro-tumor responses. Therefore, TLRs have potential as prognostic biomarkers and immunotherapeutic targets. The aim of this study was to investigate TLR1, TLR2, TLR4, TLR5, and TLR6 expression and association with clinicopathological variables and survival in gastric cancer. Immunohistochemical study on cancer specimens from 564 resected gastric cancer patients was performed using tissue microarrays. The association between patient survival and TLR expression was calculated with Cox regression adjusted for confounding factors. Patients with high cytoplasmic TLR2 expression had significantly poorer 5-year survival than the low cytoplasmic TLR2 expression group in multivariate analysis (adjusted HR 1.38, 95% CI 1.11–1.71), and this estimate was similar in intestinal type (adjusted HR 1.33, 95% CI 0.98–1.80) and diffuse type (adjusted HR 1.48, 95% CI 1.06–2.05) histology subgroups. Patients with high cytoplasmic TLR6 expression group had significantly better 5-year survival compared with low cytoplasmic TLR6 expression group in multivariate analysis (adjusted HR 0.74, 95% CI 0.60–0.91). In the subgroup analysis of diffuse type of histology, the 5-year survival was better in high cytoplasmic TLR6 expression group in multivariable analysis (HR 0.62, 95% CI 0.46–0.83). In the intestinal type of histology subgroup, no significant differences between the groups were present. TLR1, TLR4, and TLR5 expression were not associated with 5-year survival. In conclusion, cytoplasmic TLR2 and TLR6 expression seem to have independent prognostic impact in gastric cancer, while TLR1, TLR4, and TLR5 do not.
Vibrio cholerae cytolysin induces pro-inflammatory and death signals through novel TLR assembly
Vibrio cholerae cytolysin (VCC) is a potent exotoxin secreted by Vibrio cholerae , the etiological agent of the severe diarrheal disease cholera. VCC is a membrane-damaging pore-forming toxin by nature, and is well known for its ability to cause host cell death. Using wild type V. cholerae and VCC-deleted mutant variant of the bacteria, we show that VCC plays an important role in the inflammatory responses during infection in mice. This observation supports that VCC can function as a pathogen-associated molecular pattern (PAMP). Toll-like receptors (TLRs) are the key initiators of inflammation. Upon ligand recognition, TLR1 and TLR6 generally form heterodimers with TLR2 for triggering pro-inflammatory signals. In the present study, we show that VCC engages novel TLR1/4 heterodimer assembly, and elicits pro-inflammatory responses in both dendritic cells (DCs) and macrophages. Along with TLR1/4, VCC-induced pro-inflammatory response in macrophages also involves TLR2. It has been shown earlier that VCC is implicated in the V. cholerae -mediated killing of the immune cells following biofilm formation. Here we show that TLRs play an important role in VCC-mediated killing of DCs and macrophages following V. cholerae infection. Interestingly, we find that TLR1/4 signalling is specifically crucial for the VCC-induced inflammatory and death responses in DCs, as well as in mice. Additionally, we observe that similar to DCs and macrophages, TLR1/4-MyD88 play an important role in VCC-mediated inflammatory responses in another crucial immune cell type, neutrophils. Taken together, our study shows novel TLR heterodimer formation, differential recognition of the same ligand by different TLR combination in cell type-dependent manner, and their implications in the context of V. cholerae and VCC-induced immune cell death and mortality.
Antibiotic-Induced Depletion of Murine Microbiota Induces Mild Inflammation and Changes in Toll-Like Receptor Patterns and Intestinal Motility
We examine the impact of changes in microbiota induced by antibiotics on intestinal motility, gut inflammatory response, and the function and expression of toll-like receptors (TLRs). Alterations in mice intestinal microbiota were induced by antibiotics and evaluated by q-PCR and DGGE analysis. Macroscopic and microscopic assessments of the intestine were performed in control and antibiotic-treated mice. TLR expression was determined in the intestine by q-RT-PCR. Fecal parameter measurements, intestinal transit, and muscle contractility studies were performed to evaluate alterations in intestinal motility. Antibiotics reduced the total bacterial quantity 1000-fold, and diversity was highly affected by treatment. Mice with microbiota depletion had less Peyer’s patches, enlarged ceca, and mild gut inflammation. Treatment with antibiotics increased the expression of TLR4, TLR5, and TLR9 in the ileum and TLR3, TLR4, TLR6, TLR7, and TLR8 in the colon, and it reduced the expression of TLR2, TLR3, and TLR6 in the ileum and TLR2 and TLR9 in the colon. Antibiotics decreased fecal output, delayed the whole gut and colonic transit, and reduced the spontaneous contractions and the response to acetylcholine (ACh) in the ileum and colon. Activation of TLR4 by lipopolysaccharide (LPS) reverted the reduction of the spontaneous contractions induced by antibiotics in the ileum. Activation of TLR4 by LPS and TLR5 by flagellin reduced the response to ACh in the ileum in control mice. Our results confirm the role of the microbiota in the regulation of TLRs expression and shed light on the microbiota connection to motor intestinal alterations.
TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with diverse clinical presentations characterized by the presence of autoantibodies to nuclear components. Toll-like receptor (TLR)7, TLR8, and TLR9 sense microbial or endogenous nucleic acids and are implicated in the development of SLE. In mice TLR7-deficiency ameliorates SLE, but TLR8- or TLR9-deficiency exacerbates the disease because of increased TLR7 response. Thus, both TLR8 and TLR9 control TLR7 function, but whether TLR8 and TLR9 act in parallel or in series in the same or different cell types in controlling TLR7-mediated lupus remains unknown. Here, we reveal that double TLR8/9-deficient (TLR8/9 ⁻/⁻) mice on the C57BL/6 background showed increased abnormalities characteristic of SLE, including splenomegaly, autoantibody production, frequencies of marginal zone and B1 B cells, and renal pathology compared with single TLR8 ⁻/⁻ or TLR9 ⁻/⁻ mice. On the cellular level, TLR8 ⁻/⁻ and TLR8/9 ⁻/⁻ dendritic cells were hyperesponsive to TLR7 ligand R848, but TLR9 ⁻/⁻ cells responded normally. Moreover, B cells from TLR9 ⁻/⁻ and TLR8/9 ⁻/⁻ mice were hyperesponsive to R848, but TLR8 ⁻/⁻ B cells were not. These results reveal that TLR8 and TLR9 have an additive effect on controlling TLR7 function and TLR7-mediated lupus; however, they act on different cell types. TLR8 controls TLR7 function on dendritic cells, and TLR9 restrains TLR7 response on B cells.
Transcript levels of Toll-Like receptors 5, 8 and 9 correlate with inflammatory activity in Ulcerative Colitis
Background Dysregulation of innate immune response by Toll-Like Receptors (TLRs) is a key feature in Ulcerative Colitis (UC). Most studies have focused on TLR2, TLR3 , and TLR4 participation in UC. However, few studies have explored other TLRs. Therefore, the aim of this study was to evaluate the mRNA profiles of TLR1 to 9 in colonic mucosa of UC patients, according to disease activity. Methods Colonic biopsies were taken from colon during colonoscopy in 51 patients with Ulcerative Colitis and 36 healthy controls. mRNA levels of TLR1 to 9, Tollip , inflammatory cytokines IL6 and TNF were assessed by RT-qPCR with hydrolysis probes. Characterization of TLR9 protein expression was performed by Immunohistochemistry. Results Toll-like receptors TLR8, TLR9 , and IL6 mRNA levels were significantly higher in the colonic mucosa from UC patients (both quiescent and active) as compared to healthy individuals (p < 0.04). In the UC patients group the TLR2, TLR4, TLR8 and TLR9 mRNA levels were found to be significantly lower in patients with quiescent disease, as compared to those with active disease (p < 0.05), whereas TLR5 showed a trend (p = 0.06). IL6 and TNF mRNA levels were significantly higher in the presence of active disease and help to discriminate between quiescent and active disease (p < 0.05). Also, IL6 and TNF mRNA positively correlate with TLRs mRNA with the exception for TLR3 , with stronger correlations for TLR5, TLR8 , and TLR9 (p < 0.0001). TLR9 protein expression was mainly in the lamina propria infiltrate. Conclusions This study demonstrates that TLR2, TLR4, TLR8 , and TLR9 expression increases in active UC patients, and that the mRNA levels positively correlate with the severity of intestinal inflammation as well as with inflammatory cytokines.
Toll-Like Receptor mRNA Levels in Schizophrenia: Association With Complement Factors and Cingulate Gyrus Cortical Thinning
Abstract Background and Hypotheses Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. Study Design Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. Study Results We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. Conclusions The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.
Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial
To mitigate the effects of COVID-19, a vaccine is urgently needed. BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) or alum (Algel). We did a double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India. Healthy adults aged 18–55 years who were deemed healthy by the investigator were eligible. Individuals with positive SARS-CoV-2 nucleic acid and/or serology tests were excluded. Participants were randomly assigned to receive either one of three vaccine formulations (3 μg with Algel-IMDG, 6 μg with Algel-IMDG, or 6 μg with Algel) or an Algel only control vaccine group. Block randomisation was done with a web response platform. Participants and investigators were masked to treatment group allocation. Two intramuscular doses of vaccines were administered on day 0 (the day of randomisation) and day 14. Primary outcomes were solicited local and systemic reactogenicity events at 2 h and 7 days after vaccination and throughout the full study duration, including serious adverse events. Secondary outcome was seroconversion (at least four-fold increase from baseline) based on wild-type virus neutralisation. Cell-mediated responses were evaluated by intracellular staining and ELISpot. The trial is registered at ClinicalTrials.gov (NCT04471519). Between July 13 and 30, 2020, 827 participants were screened, of whom 375 were enrolled. Among the enrolled participants, 100 each were randomly assigned to the three vaccine groups, and 75 were randomly assigned to the control group (Algel only). After both doses, solicited local and systemic adverse reactions were reported by 17 (17%; 95% CI 10·5–26·1) participants in the 3 μg with Algel-IMDG group, 21 (21%; 13·8–30·5) in the 6 μg with Algel-IMDG group, 14 (14%; 8·1–22·7) in the 6 μg with Algel group, and ten (10%; 6·9–23·6) in the Algel-only group. The most common solicited adverse events were injection site pain (17 [5%] of 375 participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine [2%]), and nausea or vomiting (seven [2%]). All solicited adverse events were mild (43 [69%] of 62) or moderate (19 [31%]) and were more frequent after the first dose. One serious adverse event of viral pneumonitis was reported in the 6 μg with Algel group, unrelated to the vaccine. Seroconversion rates (%) were 87·9, 91·9, and 82·8 in the 3 μg with Algel-IMDG, 6 μg with Algel-IMDG, and 6 μg with Algel groups, respectively. CD4+ and CD8+ T-cell responses were detected in a subset of 16 participants from both Algel-IMDG groups. BBV152 led to tolerable safety outcomes and enhanced immune responses. Both Algel-IMDG formulations were selected for phase 2 immunogenicity trials. Further efficacy trials are warranted. Bharat Biotech International.
Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice
Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-beta and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies.
Ontogeny of Toll-Like Receptor Mediated Cytokine Responses of Human Blood Mononuclear Cells
Newborns and young infants suffer increased infectious morbidity and mortality as compared to older children and adults. Morbidity and mortality due to infection are highest during the first weeks of life, decreasing over several years. Furthermore, most vaccines are not administered around birth, but over the first few years of life. A more complete understanding of the ontogeny of the immune system over the first years of life is thus urgently needed. Here, we applied the most comprehensive analysis focused on the innate immune response following TLR stimulation over the first 2 years of life in the largest such longitudinal cohort studied to-date (35 subjects). We found that innate TLR responses (i) known to support Th17 adaptive immune responses (IL-23, IL-6) peaked around birth and declined over the following 2 years only to increase again by adulthood; (ii) potentially supporting antiviral defense (IFN-α) reached adult level function by 1 year of age; (iii) known to support Th1 type immunity (IL-12p70, IFN-γ) slowly rose from a low at birth but remained far below adult responses even at 2 years of age; (iv) inducing IL-10 production steadily declined from a high around birth to adult levels by 1 or 2 years of age, and; (v) leading to production of TNF-α or IL-1β varied by stimuli. Our data contradict the notion of a linear progression from an 'immature' neonatal to a 'mature' adult pattern, but instead indicate the existence of qualitative and quantitative age-specific changes in innate immune reactivity in response to TLR stimulation.
Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes
TLR sensing of pathogens triggers monocyte activation to initiate the host innate immune response to infection. Monocytes can dynamically adapt to different TLR agonists inducing different patterns of inflammatory response, and the sequence of exposure to TLRs can dramatically modulate cell activation. Understanding the interactions between TLR signalling that lead to synergy, priming and tolerance to TLR agonists may help explain how prior infections and inflammatory conditioning can regulate the innate immune response to subsequent infections. Our goal was to investigate the role of MyD88-independent/dependent TLR priming on modulating the monocyte response to LPS exposure. We stimulated human blood monocytes with agonists for TLR4 (LPS), TLR3 (poly(I:C)) and TLR7/8 (R848) and subsequently challenged them to low doses of endotoxin. The different TLR agonists promoted distinct inflammatory signatures in monocytes. Upon subsequent LPS challenge, LPS- and R848-primed monocytes did not enhance the previous response, whereas poly(I:C)-primed monocytes exhibited a significant inflammatory response concomitant with a sharp reduction on cell viability. Our results show that TLR3-primed monocytes are prompted to cell death by apoptosis in the presence of low endotoxin levels, concurrent with the production of high levels of TNFα and IL6. Of note, blocking of TNFR I/II in those monocytes did reduce TNFα production but did not abrogate cell death. Instead, direct signalling through TLR4 was responsible of such effect. Collectively, our study provides new insights on the effects of cross-priming and synergism between TLR3 and TLR4, identifying the selective induction of apoptosis as a strategy for TLR-mediated host innate response.