Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,687
result(s) for
"Traffic engineering Data processing"
Sort by:
Traffic Management
2016
Transport systems are facing an impossible dilemma: satisfy an increasing demand for mobility of people and goods, while decreasing their fossil-energy requirements and preserving the environment. Additionally, transport has an opportunity to evolve in a changing world, with new services, technologies but also new requirements (fast delivery, reliability, improved accessibility). The subject of traffic is organized into two separate but complementary volumes: Volume 3 on Traffic Management and Volume 4 on Traffic Safety. Traffic Management, Volume 3 of the 'Research for Innovative Transports' Set, presents a collection of updated papers from the TRA 2014 Conference, highlighting the diversity of research in this field. Theoretical chapters and practical case studies address topics such as cooperative systems, the global approach in modeling, road and railway traffic management, information systems and impact assessment.
Handbook of Global Logistics
2012,2013
This book offers complete coverage of logistics, examining modes, general issues, logistics in specific regions, free-trade zones, innovations in international logistics, case studies and a look at the future.
Smart Transportation: An Overview of Technologies and Applications
by
Ge, Linqiang
,
Gundogan, Kubra
,
Oladimeji, Damilola
in
Access control
,
Cloud computing
,
Communication
2023
As technology continues to evolve, our society is becoming enriched with more intelligent devices that help us perform our daily activities more efficiently and effectively. One of the most significant technological advancements of our time is the Internet of Things (IoT), which interconnects various smart devices (such as smart mobiles, intelligent refrigerators, smartwatches, smart fire alarms, smart door locks, and many more) allowing them to communicate with each other and exchange data seamlessly. We now use IoT technology to carry out our daily activities, for example, transportation. In particular, the field of smart transportation has intrigued researchers due to its potential to revolutionize the way we move people and goods. IoT provides drivers in a smart city with many benefits, including traffic management, improved logistics, efficient parking systems, and enhanced safety measures. Smart transportation is the integration of all these benefits into applications for transportation systems. However, as a way of further improving the benefits provided by smart transportation, other technologies have been explored, such as machine learning, big data, and distributed ledgers. Some examples of their application are the optimization of routes, parking, street lighting, accident prevention, detection of abnormal traffic conditions, and maintenance of roads. In this paper, we aim to provide a detailed understanding of the developments in the applications mentioned earlier and examine current researches that base their applications on these sectors. We aim to conduct a self-contained review of the different technologies used in smart transportation today and their respective challenges. Our methodology encompassed identifying and screening articles on smart transportation technologies and its applications. To identify articles addressing our topic of review, we searched for articles in the four significant databases: IEEE Xplore, ACM Digital Library, Science Direct, and Springer. Consequently, we examined the communication mechanisms, architectures, and frameworks that enable these smart transportation applications and systems. We also explored the communication protocols enabling smart transportation, including Wi-Fi, Bluetooth, and cellular networks, and how they contribute to seamless data exchange. We delved into the different architectures and frameworks used in smart transportation, including cloud computing, edge computing, and fog computing. Lastly, we outlined current challenges in the smart transportation field and suggested potential future research directions. We will examine data privacy and security issues, network scalability, and interoperability between different IoT devices.
Journal Article
A Review of Traffic Congestion Prediction Using Artificial Intelligence
2021
In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised.
Journal Article
Traffic Management: Multi-Scale Vehicle Detection in Varying Weather Conditions Using YOLOv4 and Spatial Pyramid Pooling Network
by
Ashfaq, Farzeen
,
Jhanjhi, Noor Zaman
,
Alsadun, Marwah Khalid
in
Algorithms
,
Autonomous vehicles
,
Blurring
2022
Detecting and counting on road vehicles is a key task in intelligent transport management and surveillance systems. The applicability lies both in urban and highway traffic monitoring and control, particularly in difficult weather and traffic conditions. In the past, the task has been performed through data acquired from sensors and conventional image processing toolbox. However, with the advent of emerging deep learning based smart computer vision systems the task has become computationally efficient and reliable. The data acquired from road mounted surveillance cameras can be used to train models which can detect and track on road vehicles for smart traffic analysis and handling problems such as traffic congestion particularly in harsh weather conditions where there are poor visibility issues because of low illumination and blurring. Different vehicle detection algorithms focusing the same issue deal only with on or two specific conditions. In this research, we address detecting vehicles in a scene in multiple weather scenarios including haze, dust and sandstorms, snowy and rainy weather both in day and nighttime. The proposed architecture uses CSPDarknet53 as baseline architecture modified with spatial pyramid pooling (SPP-NET) layer and reduced Batch Normalization layers. We also augment the DAWN Dataset with different techniques including Hue, Saturation, Exposure, Brightness, Darkness, Blur and Noise. This not only increases the size of the dataset but also make the detection more challenging. The model obtained mean average precision of 81% during training and detected smallest vehicle present in the image
Journal Article
Urban DAS Data Processing and Its Preliminary Application to City Traffic Monitoring
2022
Distributed acoustic sensing (DAS) is an emerging technology for recording vibration signals via the optical fibers buried in subsurface conduits. Its relatively easy-to-deploy and high spatial and temporal sampling characteristics make DAS an appealing tool to record seismic wavefields at higher quantity and quality than traditional geophones. Considering that the usage of optical fibers in the urban environment has drawn relatively less attention aside from its functionality as a telecommunication cable, we examine its ability to record seismic signals and investigate its preliminary application in city traffic monitoring. To solve the problems that DAS signals are prone to a variety of environmental noise and are generally of weak amplitude compared to noise, we propose a fast workflow for real-time DAS data processing, which can enhance the detection of regular car signals and suppress the other components. We conduct a DAS experiment in Hangzhou, China, a typical metropolitan area that can provide us with a rich data library to validate our DAS data-processing workflow. The well-processed data enable us to extract their slope and coherency attributes that can provide an estimate of real traffic situations. The one-minute (with video validations) and 24 h statistics of these attributes show that the speed and volume of car flow are well correlated demonstrates the robustness of the proposed data processing workflow and great potential of DAS for city traffic monitoring with high precision and convenience. However, challenges also exist in view that all the attributes are statistically analyzed based on the behaviors of a large number of cars, which is meaningful but lacking in precision. Therefore, we suggest developing more quantitative processing and analyzing methods to provide precise information on individual cars in future works.
Journal Article
Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory
by
Wang, Yinhai
,
Yu, Haiyang
,
Ma, Xiaolei
in
Architectural engineering
,
Artificial neural networks
,
Calibration
2015
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Journal Article
Urban Traffic Monitoring and Analysis Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature Review
by
Boboc, Răzvan Gabriel
,
Butilă, Eugen Valentin
in
Accident investigations
,
Accuracy
,
Aerial surveys
2022
Unmanned aerial vehicles (UAVs) are gaining considerable interest in transportation engineering in order to monitor and analyze traffic. This systematic review surveys the scientific contributions in the application of UAVs for civil engineering, especially those related to traffic monitoring. Following the PRISMA framework, 34 papers were identified in five scientific databases. First, this paper introduces previous works in this field. In addition, the selected papers were analyzed, and some conclusions were drawn to complement the findings. It can be stated that this is still a field in its infancy and that progress in advanced image processing techniques and technologies used in the construction of UAVs will lead to an explosion in the number of applications, which will result in increased benefits for society, reducing unpleasant situations, such as congestion and collisions in major urban centers of the world.
Journal Article