Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57,908
result(s) for
"Transcription, Genetic - physiology"
Sort by:
Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential
by
Watanabe, Akira
,
Takahashi, Kazutoshi
,
Ohnuki, Mari
in
Biological Sciences
,
Biotechnologie
,
Biotechnology
2014
Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s—the long-terminal repeats of HERV type-H (HERV-H)—to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H–driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.
Journal Article
Eukaryotic core promoters and the functional basis of transcription initiation
2018
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Journal Article
Nuclear stability and transcriptional directionality separate functionally distinct RNA species
2014
Mammalian genomes are pervasively transcribed, yielding a complex transcriptome with high variability in composition and cellular abundance. Although recent efforts have identified thousands of new long non-coding (lnc) RNAs and demonstrated a complex transcriptional repertoire produced by protein-coding (pc) genes, limited progress has been made in distinguishing functional RNA from spurious transcription events. This is partly due to present RNA classification, which is typically based on technical rather than biochemical criteria. Here we devise a strategy to systematically categorize human RNAs by their sensitivity to the ribonucleolytic RNA exosome complex and by the nature of their transcription initiation. These measures are surprisingly effective at correctly classifying annotated transcripts, including lncRNAs of known function. The approach also identifies uncharacterized stable lncRNAs, hidden among a vast majority of unstable transcripts. The predictive power of the approach promises to streamline the functional analysis of known and novel RNAs.
Despite our growing understanding of their complexity, different types of RNA are still classified using technical rather than functional criteria. Andersson
et al.
show that categorization of RNAs based on stability and direction of transcription is an effective means of functional classification.
Journal Article
Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination
by
Honjo, Tasuku
,
Stanlie, Andre
,
Muramatsu, Masamichi
in
Activation-induced cytidine deaminase
,
AIDS
,
Animals
2010
Ig class switch recombination (CSR) requires expression of activation-induced cytidine deaminase (AID) and transcription through target switch (S) regions. Here we show that knockdown of the histone chaperone facilitates chromatin transcription (FACT) completely inhibited S region cleavage and CSR in IgA-switch-inducible CH12F3-2A B cells. FACT knockdown did not reduce AID or S region transcripts but did decrease histone3 lysine4 trimethylation (H3K4me3) at both the Sμ and Sα regions. Because knockdown of FACT or H3K4 methyltransferase cofactors inhibited DNA cleavage in H3K4me3-depleted S regions, H3K4me3 may serve as a mark for recruiting CSR recombinase. These findings revealed an unexpected evolutionary conservation between CSR and meiotic recombination.
Journal Article
Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II
2012
RNA polymerase II (pol II) frequently pauses in the promoter-proximal region to ensure gene-specific regulation and RNA quality control. New research demonstrates that the cyclin-dependent kinase Cdk7 can act to establish the promoter-proximal pause, through its control of the TFIIE-DSIF switch, and to release Pol II from the pause, through its ability to activate Cdk9.
Promoter-proximal pausing by RNA polymerase II (Pol II) ensures gene-specific regulation and RNA quality control. Structural considerations suggested a requirement for initiation-factor eviction in elongation-factor engagement and pausing of transcription complexes. Here we show that selective inhibition of Cdk7—part of TFIIH—increases TFIIE retention, prevents DRB sensitivity–inducing factor (DSIF) recruitment and attenuates pausing in human cells. Pause release depends on Cdk9–cyclin T1 (P-TEFb); Cdk7 is also required for Cdk9-activating phosphorylation and Cdk9-dependent downstream events—Pol II C-terminal domain Ser2 phosphorylation and histone H2B ubiquitylation—
in vivo
. Cdk7 inhibition, moreover, impairs Pol II transcript 3′-end formation. Cdk7 thus acts through TFIIE and DSIF to establish, and through P-TEFb to relieve, barriers to elongation: incoherent feedforward that might create a window to recruit RNA-processing machinery. Therefore, cyclin-dependent kinases govern Pol II handoff from initiation to elongation factors and cotranscriptional RNA maturation.
Journal Article
Mechanisms regulating zygotic genome activation
2019
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Journal Article
Aurora‐A activation, correlated with hypoxia‐inducible factor‐1α, promotes radiochemoresistance and predicts poor outcome for nasopharyngeal carcinoma
by
Hong, Ming‐Huang
,
Liu, Li
,
Chen, Ming‐Yuan
in
Aurora Kinases
,
Blotting, Western
,
Chemoradiotherapy
2012
Previously, we and others showed that hypoxia‐inducible factor‐1α (HIF‐1α) and transcriptionally upregulated Aurora‐A were required for disease progression in several tumors. Here, we address the clinicopathologic value of Aurora‐A and HIF‐1α in locally advanced nasopharyngeal carcinoma (NPC). Aurora‐A and HIF‐1α expression was semiquantitatively evaluated by immunohistochemistry staining in 144 cases from a randomized controlled trial. Of these patients, 69 received neoadjuvant chemotherapy plus concurrent chemoradiotherapy, and acted as the training set, and 75 cases treated with neoadjuvant chemotherapy plus radiotherapy were used as the testing set to validate the prognostic effect of Aurora‐A and HIF‐1α. We found that Aurora‐A and HIF‐1α were highly expressed in NPC, but were deficient in normal adjacent epithelia. In the testing set, Aurora‐A overexpression predicted a shortened 5‐year overall survival (59.1% vs 82.5%, P = 0.024), progression‐free survival (44.8% vs 79.8%, P = 0.004), and distant metastasis‐free survival (43.0% vs 17.3%, P = 0.016). Multivariate regression analysis confirmed that Aurora‐A was indeed an independent prognostic factor for death, recurrence, and distant metastasis both in the testing set and overall patients. Moreover, a positive correlation between Aurora‐A and HIF‐1α was detected (P = 0.037). Importantly, although HIF‐1α did not show any prognostic effect for patient outcome, the subset with Aurora‐A and HIF‐1α co‐overexpression had the poorest overall, progression‐free, and distant metastasis‐free survival (all P < 0.05). Our results confirmed that Aurora‐A was an independent prognostic factor for NPC. Aurora‐A combined with HIF‐1α refined the risk definition of the patient subset, thus potentially directing locally advanced NPC patients for more selective therapy. (Cancer Sci, doi: 10.1111/j.1349‐7006.2012.02332.x, 2012)
Journal Article
Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus
by
M Jordan Rowley
,
Lopez-Cascales, María T
,
Beatriz del Blanco
in
Accessibility
,
Activation
,
Activator protein 1
2019
Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter–enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.
Journal Article
Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex
2018
Activity-dependent transcriptional responses shape cortical function. However, a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease, is lacking. To investigate the breadth of transcriptional changes that occur across cell types in the mouse visual cortex after exposure to light, we applied high-throughput single-cell RNA sequencing. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, thus revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibited inter- and intralaminar heterogeneity in the induction of stimulus-responsive genes. Non-neuronal cells showed clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of the stimulus-dependent transcriptional changes occurring across cell types in the visual cortex; these changes are probably critical for cortical function and may be sites of deregulation in developmental brain disorders.
Journal Article
Control of cell cycle transcription during G1 and S phases
by
Bertoli, Cosetta
,
Skotheim, Jan M.
,
de Bruin, Robertus A. M.
in
Animals
,
Biochemistry
,
Biology
2013
Key Points
The G1–S transcriptional programme is robustly activated by positive feedback mechanisms, creating an 'all-or-none' switch that leads to cell cycle commitment. Inactivation of G1–S transcription in both yeast and humans involves negative feedback loops.
The wave of G1–S transcripts consists of subgroups based on their function, timing and mechanism of regulation.
G1–S transcription is mechanistically linked to the DNA replication checkpoint by shared transcription factors in both yeast and humans in order to promote genomic stability during replication stress.
Systems level properties associated with G1 control, such as the commitment point to cell division, the temporal pattern of G1–S transcription and its response to genotoxic stress, are likely to be conserved across eukaryotes despite frequent lack of protein sequence homology within the regulatory network.
Recent work revealed new insights into the temporal regulation of G1–S cell cycle transcription, during proliferation and in response to activation of the DNA replication checkpoint. This has established the importance of G1–S transcription for both cell cycle progression and the maintenance of genome stability.
The accurate transition from G1 phase of the cell cycle to S phase is crucial for the control of eukaryotic cell proliferation, and its misregulation promotes oncogenesis. During G1 phase, growth-dependent cyclin-dependent kinase (CDK) activity promotes DNA replication and initiates G1-to-S phase transition. CDK activation initiates a positive feedback loop that further increases CDK activity, and this commits the cell to division by inducing genome-wide transcriptional changes. G1–S transcripts encode proteins that regulate downstream cell cycle events. Recent work is beginning to reveal the complex molecular mechanisms that control the temporal order of transcriptional activation and inactivation, determine distinct functional subgroups of genes and link cell cycle-dependent transcription to DNA replication stress in yeast and mammals.
Journal Article