Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
43,305 result(s) for "Transcriptomic"
Sort by:
Uncovering an Organ’s Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics
Revealing fine-scale cellular heterogeneity among spatial context and the functional and structural foundations of tissue architecture is fundamental within biological research and pharmacology. Unlike traditional approaches involving single molecules or bulk omics, cutting-edge, spatially resolved transcriptomics techniques offer near-single-cell or even subcellular resolution within tissues. Massive information across higher dimensions along with position-coordinating labels can better map the whole 3D transcriptional landscape of tissues. In this review, we focus on developments and strategies in spatially resolved transcriptomics, compare the cell and gene throughput and spatial resolution in detail for existing methods, and highlight the enormous potential in biomedical research. To accurately reflect organ architecture, spatially resolved transcriptomics aims to provide spatial and expression information at the single cellular level for higher-order reconstruction.In silico methods combine single-cell RNA sequencing (scRNA-seq), in situ hybridization, and prior knowledge to reconstruct spatial transcriptomes of tissues but cannot match coordinates and tend to simplify.Laser capture microdissection (LCM)-based approaches allow full gene single-cell profiling plus position information, but assay only a few cells.RNA imaging provides the expression landscape for millions of cells in situ but detects only targeted transcripts.In situ sequencing provides spatial whole genome-wide expression at the micron level by combining barcoding with NGS but fails to describe individual cells.
Predicting cellular responses to complex perturbations in high‐throughput screens
Recent advances in multiplexed single‐cell transcriptomics experiments facilitate the high‐throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep‐learning approaches for single‐cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single‐cell level for unseen dosages, cell types, time points, and species. Using newly generated single‐cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single‐cell Perturb‐seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single‐cell level and thus accelerate therapeutic applications using single‐cell technologies. Synopsis The compositional perturbation autoencoder (CPA) is a deep learning model for predicting the transcriptomic responses of single cells to single or combinatorial treatments from drugs and genetic manipulations. CPA can be trained on highly multiplexed, single‐cell experiments with thousands of conditions to predict unmeasured phenotypes (e.g., specific dose responses). It can generalize to predict responses to small molecules never seen in the training by adding priors on chemical space. Validations using a newly generated combinatorial drug perturbation dataset demonstrate the accuracy of CPA in predicting unseen drug combinations. CPA is also applicable to genetic combinatorial screens, as shown by imputing in silico 5,329 missing combinations in a single‐cell perturb‐seq experiment with diverse genetic interactions. Graphical Abstract The compositional perturbation autoencoder (CPA) is a deep learning model for predicting the transcriptomic responses of single cells to single or combinatorial treatments from drugs and genetic manipulations.
Seamless integration of image and molecular analysis for spatial transcriptomics workflows
Background Recent advancements in in situ gene expression technologies constitute a new and rapidly evolving field of transcriptomics. With the recent launch of the 10x Genomics Visium platform, such methods have started to become widely adopted. The experimental protocol is conducted on individual tissue sections collected from a larger tissue sample. The two-dimensional nature of this data requires multiple consecutive sections to be collected from the sample in order to construct a comprehensive three-dimensional map of the tissue. However, there is currently no software available that lets the user process the images, align stacked experiments, and finally visualize them together in 3D to create a holistic view of the tissue. Results We have developed an R package named STUtility that takes 10x Genomics Visium data as input and provides features to perform standardized data transformations, alignment of multiple tissue sections, regional annotation, and visualizations of the combined data in a 3D model framework. Conclusions STUtility lets the user process, analyze and visualize multiple samples of spatially resolved RNA sequencing and image data from the 10x Genomics Visium platform. The package builds on the Seurat framework and uses familiar APIs and well-proven analysis methods. An introduction to the software package is available at https://ludvigla.github.io/STUtility_web_site/ .
spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
Background Spatially-resolved transcriptomics has now enabled the quantification of high-throughput and transcriptome-wide gene expression in intact tissue while also retaining the spatial coordinates. Incorporating the precise spatial mapping of gene activity advances our understanding of intact tissue-specific biological processes. In order to interpret these novel spatial data types, interactive visualization tools are necessary. Results We describe spatialLIBD , an R/Bioconductor package to interactively explore spatially-resolved transcriptomics data generated with the 10x Genomics Visium platform. The package contains functions to interactively access, visualize, and inspect the observed spatial gene expression data and data-driven clusters identified with supervised or unsupervised analyses, either on the user’s computer or through a web application. Conclusions spatialLIBD is available at https://bioconductor.org/packages/spatialLIBD . It is fully compatible with SpatialExperiment and the Bioconductor ecosystem. Its functionality facilitates analyzing and interactively exploring spatially-resolved data from the Visium platform.
Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression
We introduce the Microenvironment Cell Populations-counter (MCP-counter) method, which allows the robust quantification of the absolute abundance of eight immune and two stromal cell populations in heterogeneous tissues from transcriptomic data. We present in vitro mRNA mixture and ex vivo immunohistochemical data that quantitatively support the validity of our method’s estimates. Additionally, we demonstrate that MCP-counter overcomes several limitations or weaknesses of previously proposed computational approaches. MCP-counter is applied to draw a global picture of immune infiltrates across human healthy tissues and non-hematopoietic human tumors and recapitulates microenvironment-based patient stratifications associated with overall survival in lung adenocarcinoma and colorectal and breast cancer.
Inferring and analyzing gene regulatory networks from multi-factorial expression data: a complete and interactive suite
Background High-throughput transcriptomic datasets are often examined to discover new actors and regulators of a biological response. To this end, graphical interfaces have been developed and allow a broad range of users to conduct standard analyses from RNA-seq data, even with little programming experience. Although existing solutions usually provide adequate procedures for normalization, exploration or differential expression, more advanced features, such as gene clustering or regulatory network inference, often miss or do not reflect current state of the art methodologies. Results We developed here a user interface called DIANE (Dashboard for the Inference and Analysis of Networks from Expression data) designed to harness the potential of multi-factorial expression datasets from any organisms through a precise set of methods. DIANE interactive workflow provides normalization, dimensionality reduction, differential expression and ontology enrichment. Gene clustering can be performed and explored via configurable Mixture Models, and Random Forests are used to infer gene regulatory networks. DIANE also includes a novel procedure to assess the statistical significance of regulator-target influence measures based on permutations for Random Forest importance metrics. All along the pipeline, session reports and results can be downloaded to ensure clear and reproducible analyses. Conclusions We demonstrate the value and the benefits of DIANE using a recently published data set describing the transcriptional response of Arabidopsis thaliana under the combination of temperature, drought and salinity perturbations. We show that DIANE can intuitively carry out informative exploration and statistical procedures with RNA-Seq data, perform model based gene expression profiles clustering and go further into gene network reconstruction, providing relevant candidate genes or signalling pathways to explore. DIANE is available as a web service ( https://diane.bpmp.inrae.fr ), or can be installed and locally launched as a complete R package.
Frontispiece: Spatiotemporal single‐cell transcriptomic profiling reveals inflammatory cell states in a mouse model of diffuse alveolar damage (EXP2 3/2023)
This study presents a comprehensive cellular atlas describing the ongoing pulmonary immune responses in the early stages of diffuse alveolar damage. This work indicates a vital role of the hyper‐inflammatory fibroblast subset around the bronchus, in mediating neutrophil infiltration through secreting soluble signaling mediators, thus boosting neutrophilic airway inflammation.