Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
235
result(s) for
"Transcriptomics data integration"
Sort by:
A strategy to detect metabolic changes induced by exposure to chemicals from large sets of condition-specific metabolic models computed with enumeration techniques
2024
Background
The growing abundance of in vitro omics data, coupled with the necessity to reduce animal testing in the safety assessment of chemical compounds and even eliminate it in the evaluation of cosmetics, highlights the need for adequate computational methodologies. Data from omics technologies allow the exploration of a wide range of biological processes, therefore providing a better understanding of mechanisms of action (MoA) related to chemical exposure in biological systems. However, the analysis of these large datasets remains difficult due to the complexity of modulations spanning multiple biological processes.
Results
To address this, we propose a strategy to reduce information overload by computing, based on transcriptomics data, a comprehensive metabolic sub-network reflecting the metabolic impact of a chemical. The proposed strategy integrates transcriptomic data to a genome scale metabolic network through enumeration of condition-specific metabolic models hence translating transcriptomics data into reaction activity probabilities. Based on these results, a graph algorithm is applied to retrieve user readable sub-networks reflecting the possible metabolic MoA (mMoA) of chemicals. This strategy has been implemented as a three-step workflow. The first step consists in building cell condition-specific models reflecting the metabolic impact of each exposure condition while taking into account the diversity of possible optimal solutions with a partial enumeration algorithm. In a second step, we address the challenge of analyzing thousands of enumerated condition-specific networks by computing differentially activated reactions (DARs) between the two sets of enumerated possible condition-specific models. Finally, in the third step, DARs are grouped into clusters of functionally interconnected metabolic reactions, representing possible mMoA, using the distance-based clustering and subnetwork extraction method. The first part of the workflow was exemplified on eight molecules selected for their known human hepatotoxic outcomes associated with specific MoAs well described in the literature and for which we retrieved primary human hepatocytes transcriptomic data in Open TG-GATEs. Then, we further applied this strategy to more precisely model and visualize associated mMoA for two of these eight molecules (amiodarone and valproic acid). The approach proved to go beyond gene-based analysis by identifying mMoA when few genes are significantly differentially expressed (2 differentially expressed genes (DEGs) for amiodarone), bringing additional information from the network topology, or when very large number of genes were differentially expressed (5709 DEGs for valproic acid). In both cases, the results of our strategy well fitted evidence from the literature regarding known MoA. Beyond these confirmations, the workflow highlighted potential other unexplored mMoA.
Conclusion
The proposed strategy allows toxicology experts to decipher which part of cellular metabolism is expected to be affected by the exposition to a given chemical. The approach originality resides in the combination of different metabolic modelling approaches (constraint based and graph modelling). The application to two model molecules shows the strong potential of the approach for interpretation and visual mining of complex omics in vitro data. The presented strategy is freely available as a python module (
https://pypi.org/project/manamodeller/
) and jupyter notebooks (
https://github.com/LouisonF/MANA
).
Journal Article
Spatial transcriptomics map of the embryonic mouse brain – a tool to explore neurogenesis
by
Di Marco, Barbara
,
Alfonso, Julieta
,
Centanin, Lázaro
in
gene expression atlas
,
Methods & Techniques
,
mouse telencephalon
2023
The developing brain has a well-organized anatomical structure comprising different types of neural and non-neural cells. Stem cells, progenitors and newborn neurons tightly interact with their neighbouring cells and tissue microenvironment, and this intricate interplay ultimately shapes the output of neurogenesis. Given the relevance of spatial cues during brain development, we acknowledge the necessity for a spatial transcriptomics map accessible to the neurodevelopmental community. To fulfil this need, we generated spatially resolved RNA sequencing (RNAseq) data from embryonic day 13.5 mouse brain sections immunostained for mitotic active neural and vascular cells. Unsupervised clustering defined specific cell type populations of diverse lineages and differentiation states. Differential expression analysis revealed unique transcriptional signatures across specific brain areas, uncovering novel features inherent to particular anatomical domains. Finally, we integrated existing single-cell RNAseq datasets into our spatial transcriptomics map, adding tissue context to single-cell RNAseq data. In summary, we provide a valuable tool that enables the exploration and discovery of unforeseen molecular players involved in neurogenesis, particularly in the crosstalk between different cell types.
Journal Article
RankerGUI: A Computational Framework to Compare Differential Gene Expression Profiles Using Rank Based Statistics
by
Guarracino, Mario Rosario
,
Thind, Amarinder Singh
,
Tripathi, Kumar Parijat
in
Algorithms
,
Computational Biology - methods
,
Datasets
2019
The comparison of high throughput gene expression datasets obtained from different experimental conditions is a challenging task. It provides an opportunity to explore the cellular response to various biological events such as disease, environmental conditions, and drugs. There is a need for tools that allow the integration and analysis of such data. We developed the “RankerGUI pipeline”, a user-friendly web application for the biological community. It allows users to use various rank based statistical approaches for the comparison of full differential gene expression profiles between the same or different biological states obtained from different sources. The pipeline modules are an integration of various open-source packages, a few of which are modified for extended functionality. The main modules include rank rank hypergeometric overlap, enriched rank rank hypergeometric overlap and distance calculations. Additionally, preprocessing steps such as merging differential expression profiles of multiple independent studies can be added before running the main modules. Output plots show the strength, pattern, and trends among complete differential expression profiles. In this paper, we describe the various modules and functionalities of the developed pipeline. We also present a case study that demonstrates how the pipeline can be used for the comparison of differential expression profiles obtained from multiple platforms’ data of the Gene Expression Omnibus. Using these comparisons, we investigate gene expression patterns in kidney and lung cancers.
Journal Article
Stoichiometric gene-to-reaction associations enhance model-driven analysis performance: Metabolic response to chronic exposure to Aldrin in prostate cancer
by
Tauler, Romà
,
Torrents, Laura
,
Bedia, Carmen
in
Aldrin
,
Aldrin - toxicity
,
Animal Genetics and Genomics
2019
Background
Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism. This integration is achieved through logical rules that describe the association between genes, proteins, and reactions (GPRs). However, current gene-to-reaction formulation lacks the stoichiometry describing the transcript copies necessary to generate an active catalytic unit, which limits our understanding of how genes modulate metabolism. The present work introduces a new state-of-the-art GPR formulation that considers the stoichiometry of the transcripts (S-GPR). As case of concept, this novel gene-to-reaction formulation was applied to investigate the metabolic effects of the chronic exposure to Aldrin, an endocrine disruptor, on DU145 prostate cancer cells. To this aim we integrated the transcriptomic data from Aldrin-exposed and non-exposed DU145 cells through S-GPR or GPR into a human GSMM by applying different constraint-based-methods.
Results
Our study revealed a significant improvement of metabolite consumption/production predictions when S-GPRs are implemented. Furthermore, our computational analysis unveiled important alterations in carnitine shuttle and prostaglandine biosynthesis in Aldrin-exposed DU145 cells that is supported by bibliographic evidences of enhanced malignant phenotype.
Conclusions
The method developed in this work enables a more accurate integration of gene expression data into model-driven methods. Thus, the presented approach is conceptually new and paves the way for more in-depth studies of aberrant cancer metabolism and other diseases with strong metabolic component with important environmental and clinical implications.
Journal Article
Unsupervised spatially embedded deep representation of spatial transcriptomics
by
Chen, Ao
,
Fu, Huazhu
,
Uddamvathanak, Rom
in
Anopheles
,
Applications of technology in health and disease
,
B cells
2024
Optimal integration of transcriptomics data and associated spatial information is essential towards fully exploiting spatial transcriptomics to dissect tissue heterogeneity and map out inter-cellular communications. We present SEDR, which uses a deep autoencoder coupled with a masked self-supervised learning mechanism to construct a low-dimensional latent representation of gene expression, which is then simultaneously embedded with the corresponding spatial information through a variational graph autoencoder. SEDR achieved higher clustering performance on manually annotated 10 × Visium datasets and better scalability on high-resolution spatial transcriptomics datasets than existing methods. Additionally, we show SEDR’s ability to impute and denoise gene expression (URL:
https://github.com/JinmiaoChenLab/SEDR/
).
Journal Article
Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data
2022
Liquid chromatography coupled with high-resolution mass spectrometry (LC–HRMS) has become a workhorse in global metabolomics studies with growing applications across biomedical and environmental sciences. However, outstanding bioinformatics challenges in terms of data processing, statistical analysis and functional interpretation remain critical barriers to the wider adoption of this technology. To help the user community overcome these barriers, we have made major updates to the well-established MetaboAnalyst platform (www.metaboanalyst.ca). This protocol extends the previous 2011 Nature Protocol by providing stepwise instructions on how to use MetaboAnalyst 5.0 to: optimize parameters for LC–HRMS spectra processing; obtain functional insights from peak list data; integrate metabolomics data with transcriptomics data or combine multiple metabolomics datasets; conduct exploratory statistical analysis with complex metadata. Parameter optimization may take ~2 h to complete depending on the server load, and the remaining three stages may be executed in ~60 min.LC–HRMS is used for metabolomics studies in the biomedical and environmental sciences. MetaboAnalyst (metaboanalyst.ca) can be used to address challenges in data processing, statistical analysis, functional interpretation and multi-omics integration.
Journal Article
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
2023
Spatial transcriptomics technologies generate gene expression profiles with spatial context, requiring spatially informed analysis tools for three key tasks, spatial clustering, multisample integration, and cell-type deconvolution. We present GraphST, a graph self-supervised contrastive learning method that fully exploits spatial transcriptomics data to outperform existing methods. It combines graph neural networks with self-supervised contrastive learning to learn informative and discriminative spot representations by minimizing the embedding distance between spatially adjacent spots and vice versa. We demonstrated GraphST on multiple tissue types and technology platforms. GraphST achieved 10% higher clustering accuracy and better delineated fine-grained tissue structures in brain and embryo tissues. GraphST is also the only method that can jointly analyze multiple tissue slices in vertical or horizontal integration while correcting batch effects. Lastly, GraphST demonstrated superior cell-type deconvolution to capture spatial niches like lymph node germinal centers and exhausted tumor infiltrating T cells in breast tumor tissue.
Advances in spatial transcriptomics technologies have enabled the gene expression profiling of tissues while retaining spatial context. Here the authors present GraphST, a graph self-supervised contrastive learning method that learns informative and discriminative spot representations from spatial transcriptomics data.
Journal Article
Spatial multi-omic map of human myocardial infarction
by
Wünnemann, Florian
,
Ramirez Flores, Ricardo O.
,
Halder, Maurice
in
13/105
,
38/39
,
631/114/2401
2022
Myocardial infarction is a leading cause of death worldwide
1
. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality
2
. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.
A time-resolved high-resolution map of human cardiac remodelling after myocardial infarction, integrating single-cell transcriptomic, chromatin accessibility and spatial transcriptomic data, provides a valuable resource for the field.
Journal Article
Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
2022
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets.
This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
Journal Article