Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,519 result(s) for "Transdifferentiation"
Sort by:
Direct cell reprogramming: approaches, mechanisms and progress
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications.
Mechanisms of hepatic stellate cell activation
Key Points Activation of hepatic stellate cells (HSCs) into proliferative, fibrogenic myofibroblasts is well established as the central driver of hepatic fibrosis in experimental and human liver injury A panoply of intracellular events and signals in all cellular compartments drive the activated phenotype of HSCs, and many of these represent potential targets for antifibrotic therapies Extracellular signals converging upon HSCs to promote their activation include those originating from the extracellular matrix and stimuli from resident and infiltrating inflammatory cells Emerging concepts in HSC activation focus on novel mediators and intracellular signals, as well as drivers of HSC inactivation, which collectively have generated a template for uncovering novel therapeutic targets Activation of hepatic stellate cells (HSCs) in liver injury is the primary driver of hepatic fibrosis. In this Review, Tsuchida and Friedman detail the varied intracellular and extracellular signalling pathways leading to HSC activation, as well as the role of HSCs in liver fibrosis resolution and as therapeutic targets. Hepatic fibrosis is a dynamic process characterized by the net accumulation of extracellular matrix resulting from chronic liver injury of any aetiology, including viral infection, alcoholic liver disease and NASH. Activation of hepatic stellate cells (HSCs) — transdifferentiation of quiescent, vitamin-A-storing cells into proliferative, fibrogenic myofibroblasts — is now well established as a central driver of fibrosis in experimental and human liver injury. Yet, the continued discovery of novel pathways and mediators, including autophagy, endoplasmic reticulum stress, oxidative stress, retinol and cholesterol metabolism, epigenetics and receptor-mediated signals, reveals the complexity of HSC activation. Extracellular signals from resident and inflammatory cells including macrophages, hepatocytes, liver sinusoidal endothelial cells, natural killer cells, natural killer T cells, platelets and B cells further modulate HSC activation. Finally, pathways of HSC clearance have been greatly clarified, and include apoptosis, senescence and reversion to an inactivated state. Collectively, these findings reinforce the remarkable complexity and plasticity of HSC activation, and underscore the value of clarifying its regulation in hopes of advancing the development of novel diagnostics and therapies for liver disease.
In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals
Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.
Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation
Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.
Dietary ω-3 polyunsaturated fatty acids are protective for myopia
Myopia is a leading cause of visual impairment and blindness worldwide. However, a safe and accessible approach for myopia control and prevention is currently unavailable. Here, we investigated the therapeutic effect of dietary supplements of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on myopia progression in animal models and on decreases in choroidal blood perfusion (ChBP) caused by near work, a risk factor for myopia in young adults. We demonstrated that daily gavage of ω-3 PUFAs (300 mg docosahexaenoic acid [DHA] plus 60 mg eicosapentaenoic acid [EPA]) significantly attenuated the development of form deprivation myopia in guinea pigs and mice, as well as of lens-induced myopia in guinea pigs. Peribulbar injections of DHA also inhibited myopia progression in form-deprived guinea pigs. The suppression of myopia in guinea pigs was accompanied by inhibition of the “ChBP reduction–scleral hypoxia cascade.” Additionally, treatment with DHA or EPA antagonized hypoxia-induced myofibroblast transdifferentiation in cultured human scleral fibroblasts. In human subjects, oral administration of ω-3 PUFAs partially alleviated the near-work–induced decreases in ChBP. Therefore, evidence from these animal and human studies suggests ω-3 PUFAs are potential and readily available candidates for myopia control.
Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages
CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays.
Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts
Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2 -deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2 fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2 fl/fl and Runx2 fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2 fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2 fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2 fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2 fl/fl and Runx2 fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.
VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System
We previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation. Here, we report a glucocorticoid-mediated posttranslational induction system of VND6 and VND7. In this system, VND6 or VND7 is expressed as a fused protein with the activation domain of the herpes virus VP16 protein and hormone-binding domain of the animal glucocorticoid receptor, and the protein's activity is induced by treatment with dexamethasone (DEX), a glucocorticoid derivative. Upon DEX treatment, transgenic Arabidopsis (Arabidopsis thaliana) plants carrying the chimeric gene exhibited transdifferentiation of various types of cells into xylem vessel elements, and the plants died. Many genes involved in xylem vessel differentiation, such as secondary wall biosynthesis and programmed cell death, were up-regulated in these plants after DEX treatment. Chemical analysis showed that xylan, a major hemicellulose component of the dicot secondary cell wall, was increased in the transgenic plants after DEX treatment. This induction system worked in poplar (Populus tremula x tremuloides) trees and in suspension cultures of cells from Arabidopsis and tobacco (Nicotiana tabacum); more than 90% of the tobacco BY-2 cells expressing VND7-VP16-GR transdifferentiated into xylem vessel elements after DEX treatment. These data demonstrate that the induction systems controlling VND6 and VND7 activities can be used as powerful tools for understanding xylem cell differentiation.
Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: In vivo and in vitro studies
Our objective was to study the vascular smooth muscle cells (VSMC) osteoblastic transdifferentiation in AGE exposed cells or those from diabetic animals, and its response to metformin treatment. VSMC were obtained from non-diabetic rats, grown with or without AGE; while VSMC of in vivo-ex vivo studies were obtained from non-diabetic control animals (C), diabetic (D), C treated with metformin (M) and D treated with metformin (D-M). We studied the osteoblastic differentiation by evaluating alkaline phosphatase (ALP), type I collagen (Col) and mineral deposit. In vitro, AGE increased proliferation, migration, and osteoblastic differentiation of VSMC. Metformin cotreatment prevented the AGE induced proliferation and migration. Both AGE and metformin stimulated the expression of ALP and Col. AGE induced mineralization was prevented by metformin. VSMC from D expressed a higher production of Col and ALP. Those from D-M showed an ALP increase vs C and M, and a partial decrease vs D. Cultured in osteogenic medium, ALP, Col and mineralization increased in D vs C, remained unchanged in M, and were prevented in D-M animals. Both AGE and DM favor VSMC differentiation towards the osteogenic phenotype and this effect can be prevented by metformin. •AGE production increase arterial calcification; it can be prevented by metformin treatment through its direct action on VSMC.•In vitro, AGE-induced VSMC transdifferentiation towards the osteoblastic phenotype was prevented by its coincubation with metformin.•In vivo, oral metformin treatment in diabetic rats prevented VSMC transdifferentiation to the osteoblastic phenotype.
Transdifferentiation of fibroblasts into muscle cells to constitute cultured meat with tunable intramuscular fat deposition
Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.