Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
402,428 result(s) for "Transitions"
Sort by:
Breaking the Speed Limits of Phase-Change Memory
Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.
Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria
Knowing the thermodynamic stability of transition metal oxide nanoparticles is important for understanding and controlling their role in a variety of industrial and environmental systems. Using calorimetric data on surface energies for cobalt, iron, manganese, and nickel oxide systems, we show that surface energy strongly influences their redox equilibria and phase stability. Spinels (M₃O₄) commonly have lower surface energies than metals (M), rocksalt oxides (MO), and trivalent oxides (M₂O₃) of the same metal; thus, the contraction of the stability field of the divalent oxide and expansion of the spinel field appear to be general phenomena. Using tabulated thermodynamic data for bulk phases to calculate redox phase equilibria at the nanoscale can lead to errors of several orders of magnitude in oxygen fugacity and of 100 to 200 kelvin in temperature.
Organic Glasses with Exceptional Thermodynamic and Kinetic Stability
Vapor deposition has been used to create glassy materials with extraordinary thermodynamic and kinetic stability and high density. For glasses prepared from indomethacin or 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene, stability is optimized when deposition occurs on substrates at a temperature of 50 K below the conventional glass transition temperature. We attribute the substantial improvement in thermodynamic and kinetic properties to enhanced mobility within a few nanometers of the glass surface during deposition. This technique provides an efficient means of producing glassy materials that are low on the energy landscape and could affect technologies such as amorphous pharmaceuticals.
Carbon Sovereignty
For almost fifty years, coal dominated the Navajo economy. But in 2019 one of the Navajo Nation's largest coal plants closed. This comprehensive new work offers a deep dive into the complex inner workings of energy shift in the Navajo Nation. Geographer Andrew Curley, a member of the Navajo Nation, examines the history of coal development within the Navajo Nation, including why some Diné supported coal and the consequences of doing so. He explains the Navajo Nation's strategic choices to use the coal industry to support its sovereignty as a path forward in the face of ongoing colonialism. Carbon Sovereignty demonstrates the mechanism of capitalism through colonialism and the construction of resource sovereignty, in both the Navajo Nation's embrace and its rejection of a coal economy. For the people of the Navajo Nation, energy sovereignty is dire and personal. Thanks to on-the-ground interviews with Diné coal workers, environmental activists, and politicians, Curley documents the real consequences of change as they happened. While some Navajo actors have doubled down for coal, others have moved toward transition. Curley argues that political struggles ultimately shape how we should understand coal, capitalism, and climate change. The rise and fall of coal magnify the nuance and complexity of change. Historical and contemporary issues intermingle in everyday life with lasting consequences.
Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod
The study of first-order structural transformations has been of great interest to scientists in many disciplines. Expectations from phase-transition theory are that the system fluctuates between two equilibrium structures near the transition point and that the region of transition broadens in small crystals. We report the direct observation of structural fluctuations within a single nanocrystal using transmission electron microscopy. We observed trajectories of structural transformations in individual nanocrystals with atomic resolution, which reveal details of the fluctuation dynamics, including nucleation, phase propagation, and pinning of structural domains by defects. Such observations provide crucial insight for the understanding of microscopic pathways of phase transitions.
Toward major evolutionary transitions theory 2.0
The impressive body of work on the major evolutionary transitions in the last 20 y calls for a reconstruction of the theory although a 2D account (evolution of informational systems and transitions in individuality) remains. Significant advances include the concept of fraternal and egalitarian transitions (lower-level units like and unlike, respectively). Multilevel selection, first without, then with, the collectives in focus is an important explanatory mechanism. Transitions are decomposed into phases of origin, maintenance, and transformation (i.e., further evolution) of the higher level units, which helps reduce the number of transitions in the revised list by two so that it is less top-heavy. After the transition, units show strong cooperation and very limited realized conflict. The origins of cells, the emergence of the genetic code and translation, the evolution of the eukaryotic cell, multicellularity, and the origin of human groups with language are reconsidered in some detail in the light of new data and considerations. Arguments are given why sex is not in the revised list as a separate transition. Some of the transitions can be recursive (e.g., plastids, multicellularity) or limited (transitions that share the usual features of major transitions without a massive phylogenetic impact, such as the micro- and macronuclei in ciliates). During transitions, new units of reproduction emerge, and establishment of such units requires high fidelity of reproduction (as opposed to mere replication).
Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Extended anharmonic collapse of phonon dispersions in SnS and SnSe
The lattice dynamics and high-temperature structural transition in SnS and SnSe are investigated via inelastic neutron scattering, high-resolution Raman spectroscopy and anharmonic first-principles simulations. We uncover a spectacular, extreme softening and reconstruction of an entire manifold of low-energy acoustic and optic branches across a structural transition, reflecting strong directionality in bonding strength and anharmonicity. Further, our results solve a prior controversy by revealing the soft-mode mechanism of the phase transition that impacts thermal transport and thermoelectric efficiency. Our simulations of anharmonic phonon renormalization go beyond low-order perturbation theory and capture these striking effects, showing that the large phonon shifts directly affect the thermal conductivity by altering both the phonon scattering phase space and the group velocities. These results provide a detailed microscopic understanding of phase stability and thermal transport in technologically important materials, providing further insights on ways to control phonon propagation in thermoelectrics, photovoltaics, and other materials requiring thermal management. Thermoelectric efficiency of SnS and SnSe is reported to peak around the phase transition temperature around 800 K; however, the transition mechanism and origin of ultralow thermal conductivity remain unclear. Here, the authors reveal the soft-mode mechanism of the phase transition that impacts thermal transport and thermoelectric efficiency.
EMT and MET: necessary or permissive for metastasis?
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view of single‐cell dissemination. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.