Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
13,065 result(s) for "Translational Medical Research"
Sort by:
Evolution of Translational Omics
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
Community-based participatory research and integrated knowledge translation: advancing the co-creation of knowledge
Background Better use of research evidence (one form of “knowledge”) in health systems requires partnerships between researchers and those who contend with the real-world needs and constraints of health systems. Community-based participatory research (CBPR) and integrated knowledge translation (IKT) are research approaches that emphasize the importance of creating partnerships between researchers and the people for whom the research is ultimately meant to be of use (“knowledge users”). There exist poor understandings of the ways in which these approaches converge and diverge. Better understanding of the similarities and differences between CBPR and IKT will enable researchers to use these approaches appropriately and to leverage best practices and knowledge from each. The co-creation of knowledge conveys promise of significant social impacts, and further understandings of how to engage and involve knowledge users in research are needed. Main text We examine the histories and traditions of CBPR and IKT, as well as their points of convergence and divergence. We critically evaluate the ways in which both have the potential to contribute to the development and integration of knowledge in health systems. As distinct research traditions, the underlying drivers and rationale for CBPR and IKT have similarities and differences across the areas of motivation, social location, and ethics; nevertheless, the practices of CBPR and IKT converge upon a common aim: the co-creation of knowledge that is the result of knowledge user and researcher expertise. We argue that while CBPR and IKT both have the potential to contribute evidence to implementation science and practices for collaborative research, clarity for the purpose of the research—social change or application—is a critical feature in the selection of an appropriate collaborative approach to build knowledge. Conclusion CBPR and IKT bring distinct strengths to a common aim: to foster democratic processes in the co-creation of knowledge. As research approaches, they create opportunities to challenge assumptions about for whom, how, and what is defined as knowledge, and to develop and integrate research findings into health systems. When used appropriately, CBPR and IKT both have the potential to contribute to and advance implementation science about the conduct of collaborative health systems research.
How pragmatic is it? Lessons learned using PRECIS and RE-AIM for determining pragmatic characteristics of research
Background The need for high-quality evidence that is applicable in real-world, routine settings continues to increase. Pragmatic trials are designed to evaluate the effectiveness of interventions in real-world settings, whereas explanatory trials aim to test whether an intervention works under optimal situations. There is a continuum between explanatory and pragmatic trials. Most trials have aspects of both, making it challenging to label and categorize a trial and to evaluate its potential for translation into practice. Methods We summarize our experience applying the Pragmatic-Explanatory Continuum Indicator Summary (PRECIS) combined with external validity items based on the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to three studies to provide a more robust and comprehensive assessment of trial characteristics related to translation of research. We summarize lessons learned using domains from the combined frameworks for use in study planning, evaluating specific studies, and reviewing the literature and make recommendations for future use. Results A variety of coders can be trained to use the PRECIS and RE-AIM domains. These domains can also be used for diverse purposes, content areas, and study types, but are not without challenges. Both PRECIS and RE-AIM domains required modification in two of the three studies to evaluate and rate domains specific to study type. Lessons learned involved: dedicating enough time for training activities related to the domains; use of reviewers with a range of familiarity with specific study protocols; how to best adapt ratings that reflect complex study designs; and differences of opinion regarding the value of creating a composite score for these criteria. Conclusions Combining both frameworks can specifically help identify where and how a study is and is not pragmatic. Using both PRECIS and RE-AIM allows for standard reporting of key study characteristics related to pragmatism and translation. Such measures should be used more consistently to help plan more pragmatic studies, evaluate progress, increase transparency of reporting, and integrate literature to facilitate translation of research into practice and policy.
Transfer of skills for difficult intubation after videolaryngoscopy training: a randomized simulation study
While previous simulation studies demonstrated comparable retention of skills for DL versus VL in normal manikins [4, 5], it is unknown if VL training among physician trainees would lead to ineffective DL use for difficult intubation scenarios. Ethical approval was sought from the National Healthcare Group Domain Specific Review Board (DSRB 2015/00937). Availability of data and materials The datasets generated and/or analyzed during the current study are not publicly available due as the local approval authority does not permit data sets to be placed publicly but are available from the corresponding author on reasonable request.
Integrating research into clinical practice: challenges and solutions for Canada
Despite Canada's investment of hundreds of millions of dollars into researching coronavirus disease 2019 (COVID-19), contributions from other countries have greatly exceeded Canada's research productivity. Additional research funds in Canada have been leveraged during the pandemic, and more may be needed. However, it will take more than just funding to fulfill Canada's health research potential; a culture change is required, along with the will to forge a partnership among the provincial and territorial health systems and the various research institutes and organizations. Here, Lamontagne et al discuss the limitations of the existing clinical research infrastructure in Canada, describe the mechanisms implemented to successfully embed clinical research in the UK health system and provide a roadmap to a Canadian version of the UK system.