Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
38,083 result(s) for "Tree growth"
Sort by:
The case of the wooden timekeeper
\"The Case of the Wooden Timekeeper follows characters Scout and Daisy as they learn about trees. The book features Field Notes with more information about trees and a Nature Craft for kids to make at home.\"-- Provided by publisher.
Plant responses to fertilization experiments in lowland, species-rich, tropical forests
We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected.
Luna and me : the true story of a girl who lived in a tree to save a forest
\"Social activism combines with environmentalism in this picture book bio of Julia Butterfly Hill and Luna, the thousand-year-old redwood tree whose life she saved\"-- Provided by publisher.
Drought alters timing, quantity, and quality of wood formation in Scots pine
Drought has been frequently discussed as a trigger for forest decline. Today, large-scale Scots pine decline is observed in many dry inner-Alpine valleys, with drought discussed as the main causative factor. This study aimed to analyse the impact of drought on wood formation and wood structure. To study tree growth under contrasting water supply, an irrigation experiment was installed in a mature Scots pine (Pinus sylvestris L.) forest at a xeric site in a dry inner-Alpine valley. Inter- and intra-annual radial increments as well as intra-annual variations in wood structure of pine trees were studied. It was found that non-irrigated trees had a noticeably shorter period of wood formation and showed a significantly lower increment. The water conduction cells were significantly enlarged and had significantly thinner cell walls compared with irrigated trees. It is concluded that pine trees under drought stress build a more effective water-conducting system (larger tracheids) at the cost of a probably higher vulnerability to cavitation (larger tracheids with thinner cell walls) but without losing their capability to recover. The significant shortening of the growth period in control trees indicated that the period where wood formation actually takes place can be much shorter under drought than the 'potential' period, meaning the phenological growth period.
Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate
Significance Forests worldwide have undergone rapid changes; however, understanding the causes of the changes has been a challenge. Climate on the regional scale has been overwhelmingly presumed to drive these changes, with little attention paid to the possible effects of competition. We compiled a long-term forest dataset from western Canada to study the relative importance of climate change and competition on tree growth, mortality, and recruitment. We showed that competition was the primary factor causing the long-term changes. Regional climate had a weaker yet significant effect on tree mortality, but no effect on tree growth and recruitment. This finding suggests that forest studies focused solely on the effects of climate may overlook the effect of other processes critical to forest dynamics. Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958–2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes—more so than external climatic factors—are driving forest dynamics.
Forest growth and yield modeling
\"Completely updated and expanded new edition of this widely cited book, Modelling Forest Growth and Yield, 2nd Edition synthesizes current scientific literature, provides insights in how models are constructed, gives suggestions for future developments, and outlines keys for successful implementation of models.The book describes current modeling approaches for predicting forest growth and yield and explores the components that comprise the various modeling approaches. It provides the reader with the tools for evaluating and calibrating growth and yield models and outlines the steps necessary for developing a forest growth and yield model\"--
Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density
1. Stem xylem characteristics have a great impact on growth and adult stature of trees because of their role in mechanical support, long‐distance water transport and whole‐plant carbon allocation. Yet, despite the potential causal link between xylem traits and plant growth/adult stature, most studies have tried to link wood density, an indirect but easy to measure proxy for wood properties, to tree growth and size. 2. To determine whether xylem traits outperform wood density as predictors of tree growth and stature, we evaluated the covariation among wood density, xylem anatomical traits, tree diameter growth rate and adult stature in 40 Asian tropical tree species through principal component analyses and through bivariate correlation, both across species and across phylogenetically independent contrasts. 3. Vessel diameter exhibited a tight negative relationship with vessel frequency. Wood density showed a significant correlation with vessel diameter and density, but not with vessel fraction. Most correlations between functional traits indicate adaptive coordination, demonstrated by significant correlations between phylogenetically independent contrasts. 4. Across species, diameter growth rate and adult stature were positively correlated with vessel lumen diameter and potential hydraulic conductivity, but not with wood density. Thus, our results suggest that xylem anatomical traits that are linked to hydraulic conductivity are better predictors of tree growth rate and adult stature than wood density. 5. Synthesis. We found that xylem anatomical traits have a more significant influence on whole‐plant performance due to their direct association with stem hydraulic conductivity, whereas wood density is decoupled from hydraulic function due to complex variations in xylem components.
CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees
Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day-induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.