Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,468 result(s) for "Triticum - genetics"
Sort by:
Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat
Background Members of the plant-specific SPL gene family (squamosa promoter-binding protein -like) contain the SBP conserved domain and are involved in the regulation of plant growth and development, including the development of plant flowers and plant epidermal hair, the plant stress response, and the synthesis of secondary metabolites. This family has been identified in various plants. However, there is no systematic analysis of the SPL gene family at the genome-wide level of wheat. Results In this study, 56 putative TaSPL genes were identified using the comparative genomics method; we renamed them TaSPL001 - TaSPL056 on their chromosomal distribution. According to the un-rooted neighbor joining phylogenetic tree, gene structure and motif analyses, the 56 TaSPL genes were divided into 8 subgroups. A total of 81 TaSPL gene pairs were designated as arising from duplication events and 64 interacting protein branches were identified as involve in the protein interaction network. The expression patterns of 21 randomly selected TaSPL genes in different tissues (roots, stems, leaves and inflorescence) and under 4 treatments (abscisic acid, gibberellin, drought and salt) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Conclusions The wheat genome contains 56 TaSPL genes and those in same subfamily share similar gene structure and motifs. TaSPL gene expansion occurred through segmental duplication events. Combining the results of transcriptional and qRT-PCR analyses, most of these TaSPL genes were found to regulate inflorescence and spike development. Additionally, we found that 13 TaSPLs were upregulated by abscisic acid, indicating that TaSPL genes play a positive role in the abscisic acid-mediated pathway of the seedling stage. This study provides comprehensive information on the SPL gene family of wheat and lays a solid foundation for elucidating the biological functions of TaSPLs and improvement of wheat yield.
Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination
Meiotic recombination is a critical process for plant breeding, as it creates novel allele combinations that can be exploited for crop improvement. In wheat, a complex allohexaploid that has a diploid-like behaviour, meiotic recombination between homoeologous or alien chromosomes is suppressed through the action of several loci. Here, we report positional cloning of Pairing homoeologous 2 (Ph2) and functional validation of the wheat DNA mismatch repair protein MSH7-3D as a key inhibitor of homoeologous recombination, thus solving a half-century-old question. Similar to ph2 mutant phenotype, we show that mutating MSH7-3D induces a substantial increase in homoeologous recombination (up to 5.5 fold) in wheat-wild relative hybrids, which is also associated with a reduction in homologous recombination. These data reveal a role for MSH7-3D in meiotic stabilisation of allopolyploidy and provides an opportunity to improve wheat’s genetic diversity through alien gene introgression, a major bottleneck facing crop improvement. In the allohexaploid genome of wheat, meiotic recombination between homoeologues is suppressed through the action of several loci. Here, the authors report the cloning of the long sought-after gene Ph2 and show its function in reduction of homoeologous recombination.
Evaluation of grain yield stability of tritipyrum as a novel cereal in comparison with triticale lines and bread wheat varieties through univariate and multivariate parametric methods
Salinity is a major abiotic stress affecting cereal production. Thus, tritipyrum (x. Tritipyrum ), a potential novel salt-tolerant cereal, was introduced as an appropriate alternative for cereal production. The purposes of this study were to evaluate agronomic traits, yield, and yield stability of eight primary tritipyrum lines, five promising triticale lines, and four bread wheat varieties and to screen a stable yielding line. The experiments were conducted in randomized complete block designs with three replicates in three locations during four growing seasons. Analysis of variance in each environment and Bartlett’s test for the variance homogeneity of experimental errors were made. Subsequently, separate experiments were analyzed as a combined experiment. The stability of grain yield was analyzed according to Eberhart and Russell’s regression method, environmental variance, Wrick’s ecovalance, Shokla’s stability variance, AMMI, and Tai methods. Genotype × environment interactions (GEI) and environments were significant for the agronomic traits. Stability analysis revealed that combined primary tritipyrum line (Ka/b)(Cr/b)-5 and triticale 4115, 4108, and M45 lines had good adaptability in all environments. The results of the AMMI3 model and pattern analysis showed that the new cereal, tritipyrum, had the most stable response in various environments. The tritipyrum line (Ka/b)(Cr/b)-5 had the best yield performance and general adaptability. Based on Tai’s method, the contribution of spike number to the stability of grain yield over different environments was higher than that of other yield components. Also, tritipyrum lines demonstrated higher stability compared with wheat and triticale. Totally, M45 triticale and tritipyrum (Ka/b)(Cr/b)-5 lines were the most stable genotypes with high grain yield. Complementary agronomic experiments may then release a new grain crop of triticale and a new pasture line of combined primary tritipyrum for grain and forage. Moreover, the combined tritipyrum line can be used in bread wheat breeding programs for producing salt-tolerant wheat cultivars.
In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions
The importance of wheat yellow rust disease, caused by Puccinia striiformis f. sp. tritici (Pst), has increased substantially due to the emergence of aggressive new Pst races in the last couple of decades. In an era of escalating human populations and climate change, it is vital to understand the infection mechanism of Pst in order to develop better strategies to combat wheat yellow disease. The present study focuses on the identification of small secreted proteins (SSPs) and candidate-secreted effector proteins (CSEPs) that are used by the pathogen to support infection and control disease development. We generated de novo assembled transcriptomes of Pst collected from wheat fields in central Anatolia. We inoculated both susceptible and resistant seedlings with Pst and analyzed haustoria formation. At 10 days post-inoculation (dpi), we analyzed the transcriptomes and identified 10550 Differentially Expressed Unigenes (DEGs), of which 6072 were Pst-mapped. Among those Pst-related genes, 227 were predicted as PstSSPs. In silico characterization was performed using an approach combining the transcriptomic data and data mining results to provide a reliable list to narrow down the ever-expanding repertoire of predicted effectorome. The comprehensive analysis detected 14 Differentially Expressed Small-Secreted Proteins (DESSPs) that overlapped with the genes in available literature data to serve as the best CSEPs for experimental validation. One of the CSEPs was cloned and studied to test the reliability of the presented data. Biological assays show that the randomly selected CSEP, Unigene17495 (PSTG_10917), localizes in the chloroplast and is able to suppress cell death induced by INF1 in a Nicotiana benthamiana heterologous expression system.
Postprandial blood glucose and insulin responses to breads formulated with different wheat evolutionary populations (Triticum aestivum L.): A randomized controlled trial on healthy subjects
This study aimed to evaluate the effect of breads made with two different wheat evolutionary populations (EPs), compared with a modern variety, on postprandial blood glucose and insulin responses. A randomized controlled crossover postprandial study involving 12 healthy subjects was conducted. Seven non-commercial breads produced with flours from two different bread wheat (T. aestivum L.) EPs (Bio2, ICARDA) and a modern bread wheat variety (Bologna) were considered controls, with two different bread-making processes (Saccharomyces cerevisiae and sourdough), and were specifically formulated for the study. Postprandial incremental curves, incremental area under the curve (IAUC), maximum postprandial peaks for blood glucose and plasma insulin over 2 h after administration of isoglucidic portions of breads (50 g of available carbohydrates) were evaluated. The comparison of incremental curves, IAUC, and maximum postprandial peaks after consumption of breads formulated with EPs and control breads showed no differences among samples. Neither the flour nor the leavening technic used for the baking were effective in inducing a different postprandial response compared with the Bologna variety. EPs, being characterized by higher degree of crop genetic diversity, may have a relevant agronomic role to guarantee good and stable yields and quality under low input management in a changing climate; however, future studies are needed to better investigate their potential positive effect on human health. [Display omitted] •Wheat evolutionary populations (EPs) may have a relevant agronomic role.•Studies evaluating the effect of EPs on postprandial glucose (PPG) response are lacking.•Breads with EPs induced PPG and insulin responses similar to modern variety formulated breads.•Sourdough and yeast did not differently affect PPG and insulin responses.
A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences
Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602  A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.
Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology
Drought stress is a major yield-limiting factor throughout the world in wheat (Triticum aestivum L.), causing losses of up to 80% of the total yield. The identification of factors affecting drought stress tolerance in the seedling stage is especially important to increase adaptation and accelerate the grain yield potential. In the current study, 41 spring wheat genotypes were tested for their tolerance to drought at the germination stage under two different polyethylene glycol concentrations (PEG) of 25% and 30%. For this purpose, twenty seedlings from each genotype were evaluated in triplicate with a randomized complete block design (RCBD) in a controlled growth chamber. The following nine parameters were recorded: germination pace (GP), germination percentage (G%), number of roots (NR), shoot length (SL), root length (RL), shoot–root length ratio (SRR), fresh biomass weight (FBW), dry biomass weight (DBW), and water content (WC). An analysis of variance (ANOVA) revealed highly significant differences (p < 0.01) among the genotypes, treatments (PEG25%, PEG30%) and genotypes × treatment interaction, for all traits. The broad-sense heritability (H2) estimates were very high in both concentrations. They ranged from 89.4 to 98.9% under PEG25% and from 70.8 to 98.7% under PEG30%. Citr15314 (Afghanistan) was among the best performing genotypes under both concentrations for most of the germination traits. Two KASP markers for TaDreb-B1 and Fehw3 genes were used to screen all genotypes and to study the effect of these on drought tolerance at the germination stage. All genotypes with Fehw3 (only) showed a better performance for most traits under both concentrations compared to other genotypes having TaDreb-B1 or having both genes. To our knowledge, this work is the first report showing the effect of the two genes on germination traits under severe drought stress conditions.
Effect of Different Functional Food Supplements on the Gut Microbiota of Prediabetic Indonesian Individuals during Weight Loss
The gut microbiota has been shown in recent years to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of a 2-week functional food intervention on the gut microbiota composition in prediabetic individuals. A randomized double-blind, cross-over trial was conducted on prediabetic subjects. Fifteen volunteers were provided products made of: (i) 50% taro flour + 50% wheat flour; (ii) these products and the probiotic L. plantarum IS-10506; or (iii) these products with beetroot adsorbed for a period of 2 weeks with 2 weeks wash-out in between. Stool and blood samples were taken at each baseline and after each of the interventions. The gut microbiota composition was evaluated by sequencing the V3–V4 region of the 16S rRNA gene and anthropometric measures were recorded. The total weight loss over the entire period ranged from 0.5 to 11 kg. The next-generation sequencing showed a highly personalized microbiota composition. In the principal coordinate analyses, the samples of each individual clustered closer together than the samples of each treatment. For six individuals, the samples clustered closely together, indicating a stable microbiota. For nine individuals, the microbiota was less resilient and, depending on the intervention, the beta-diversity transiently differed greatly only to return to the composition close to the baseline during the wash-out. The statistical analyses showed that 202 of the total 304 taxa were significantly different between the participants. Only Butyricimonas could be correlated with taro ingestion. The results of the study show that the highly variable interindividual variation observed in the gut microbiota of the participants clouded any gut microbiota modulation that might be present due to the functional food interventions.
Multiple wheat genomes reveal global variation in modern breeding
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat ( Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome 1 , and the lack of genome-assembly data for multiple wheat lines 2 , 3 . Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses 4 , 5 . We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm1 6 , a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars. Comparison of multiple genome assemblies from wheat reveals extensive diversity that results from the complex breeding history of wheat and provides a basis for further potential improvements to this important food crop.
Wild emmer genome architecture and diversity elucidate wheat evolution and domestication
Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat’s domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.