Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
348
result(s) for
"Triturus"
Sort by:
A signature of dynamic biogeography: enclaves indicate past species replacement
2017
Understanding how species have replaced each other in the past is important to predicting future species turnover. While past species replacement is difficult to detect after the fact, the process may be inferred from present-day distribution patterns. Species with abutting ranges sometimes show a characteristic distribution pattern, where a section of one species range is enveloped by that of the other. Such an enclave could indicate past species replacement: when a species is partly supplanted by a competitor, but a population endures locally while the invading species moves around and past it, an enclave forms. If the two species hybridize and backcross, the receding species is predicted to leave genetic traces within the expanding one under a scenario of species replacement. By screening dozens of genes in hybridizing crested newts, we uncover genetic remnants of the ancestral species, now inhabiting an enclave, in the range of the surrounding invading species. This independent genetic evidence supports the past distribution dynamics we predicted from the enclave. We suggest that enclaves provide a valuable tool in understanding historical species replacement, which is important because a major conservation concern arising from anthropogenic climate change is increased species replacement in the future.
Journal Article
Testing the applicability of tagging the Great crested newt (Triturus cristatus) using passive integrated transponders
2019
Tracking individual animals with small-sized passive integrated transponder tags (PIT tags) has become a popular and widespread method, one which can be used for investigating life history traits, including dispersal patterns of small protected animals such as newts. In this study, we tested the applicability of PIT tag usage for individual marking with the Great crested newt (Triturus cristatus) as a model amphibian species, and to test the detection of the newts in nature using a passive telemetry system. Clove oil was used as an anaesthetic before surgery. We implanted PIT tags under the skin of 140 newts. The survival rate of newts was 98.57%. X-ray images were taken to check the exact positions of the PIT tags. Since approximately 15.71% of the newts were capable of expelling the tag from their bodies, tag loss has to be accounted for in future behavioural studies dealing with newts and other amphibians potentially capable of frequent tag expulsion. Lastly, we detected by passive telemetry 97 individuals out of 100 released into a natural breeding pond. Males had higher activity (13 detected males vs 7 females per hour) than females, thus males could be detected if present with more certainty. The result of the movement behaviour showed that e.g. the male of T. cristatus in a breeding pond can travel up to 20 m in 78 seconds. In summary, this promising method could allow the automatic data collection of marked newts in aquatic as well as in terrestrial biotopes, providing data on their dispersal, diurnal activity and movement behaviour.
Journal Article
Asymmetric Viability of Reciprocal-Cross Hybrids between Crested and Marbled Newts (Triturus cristatus and T. marmoratus)
by
Jehle, Robert
,
Bardakci, Fevzi
,
Arntzen, Jan W.
in
Allozyme
,
Animal populations
,
Animal reproduction
2009
Hybridization between divergent lineages often results in reduced hybrid viability. Here we report findings from a series of independent molecular analyses over several seasons on four life stages of F1 hybrids between the newts Triturus cristatus and T. marmoratus. These two species form a bimodal hybrid zone of broad overlap in France, with F1 hybrids making up about 4% of the adult population. We demonstrate strong asymmetry in the direction of the cross, with one class (cristatus-mothered) making up about 90% of F1 hybrids. By analyzing embryos and hatchlings, we show that this asymmetry is not due to prezygotic effects, as both classes of hybrid embryos are present at similar frequencies, implicating differential selection on the two hybrid classes after hatching. Adult F1 hybrids show a weak Haldane effect overall, with a 72% excess of females. The rarer marmoratus-mothered class, however, consists entirely of males. The absence of females from this class of adult F1 hybrids is best explained by an incompatibility between the cristatus X chromosome and marmoratus cytoplasm. It is thus important to distinguish the two classes of reciprocal-cross hybrids before making general statements about whether Haldane's rule is observed.
Journal Article
Corresponding Mitochondrial DNA and Niche Divergence for Crested Newt Candidate Species
2012
Genetic divergence of mitochondrial DNA does not necessarily correspond to reproductive isolation. However, if mitochondrial DNA lineages occupy separate segments of environmental space, this supports the notion of their evolutionary independence. We explore niche differentiation among three candidate species of crested newt (characterized by distinct mitochondrial DNA lineages) and interpret the results in the light of differences observed for recognized crested newt species. We quantify niche differences among all crested newt (candidate) species and test hypotheses regarding niche evolution, employing two ordination techniques (PCA-env and ENFA). Niche equivalency is rejected: all (candidate) species are found to occupy significantly different segments of environmental space. Furthermore, niche overlap values for the three candidate species are not significantly higher than those for the recognized species. As the three candidate crested newt species are, not only in terms of mitochondrial DNA genetic divergence, but also ecologically speaking, as diverged as the recognized crested newt species, our findings are in line with the hypothesis that they represent cryptic species. We address potential pitfalls of our methodology.
Journal Article
Genetic and morphological data demonstrate hybridization and backcrossing in a pair of salamanders at the far end of the speciation continuum
2021
Deeply diverged yet hybridizing species provide a system to investigate the final stages of the speciation process. We study a hybridizing pair of salamander species—the morphologically and genetically drastically different newts Triturus cristatus and T. marmoratus—with a panel of 32 nuclear and mitochondrial genetic markers. Morphologically identified hybrids are mostly of the F1 generation and mothered by T. cristatus. The sex ratio of the F1 hybrid class is reciprocally skewed, with a preponderance of females in T. cristatus‐mothered hybrids and males in T. marmoratus‐mothered hybrids. This amounts to the Haldane effect operating in one direction of the cross. Deeper generation hybrids are occasionally produced, possibly including F1 hybrid × backcross hybrid offspring. Interspecific gene flow is low, yet skewed toward T. cristatus. This asymmetry may be caused by hybrid zone movement, with the superseding species being predisposed to introgression. The persisting gene flow between deeply differentiated species supports the notion that full genetic isolation may be selected against. Conversely, published morphological data suggest that introgressive hybridization is detrimental, with digital malformations occurring more frequently in the area of sympatry. Finally, to assist field identification, both within the area of natural range overlap and concerning anthropogenic introductions elsewhere, we document the phenotypical variation of two generations of hybrids compared with both parental species. We suggest that fluctuating range boundaries, ecological segregation, cytonuclear incompatibilities and hybrid breakdown through Bateson–Dobzhansky–Muller incompatibilities all contribute to species integrity, despite incomplete isolation during secondary contact.
Journal Article
Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models
2012
Background
If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species,
Triturus macedonicus
and
T. karelinii
, distributed on the Balkan Peninsula in south-eastern Europe, as a model.
Results
We first delimit a ca. 54,000 km
2
area in which
T. macedonicus
contains
T. karelinii
mitochondrial DNA. This introgression zone bisects the range of
T. karelinii
, cutting off a
T. karelinii
enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in
T. karelinii
suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for
T. macedonicus
, whereas it decreased for
T. karelinii
.
Conclusion
The presence of a
T. karelinii
enclave suggests that
T. karelinii
was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose
T. karelinii
was outcompeted by
T. macedonicus
, which captured
T. karelinii
mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by
T. karelinii
itself, and that
T. karelinii
mitochondrial DNA spread there through
T. macedonicus
exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the
T. macedonicus
range by natural selection.
Journal Article
Exploring the Effect of Asymmetric Mitochondrial DNA Introgression on Estimating Niche Divergence in Morphologically Cryptic Species
2014
If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation.
Journal Article
Data Concatenation, Bayesian Concordance and Coalescent-Based Analyses of the Species Tree for the Rapid Radiation of Triturus Newts
2014
The phylogenetic relationships for rapid species radiations are difficult to disentangle. Here we study one such case, namely the genus Triturus, which is composed of the marbled and crested newts. We analyze data for 38 genetic markers, positioned in 3-prime untranslated regions of protein-coding genes, obtained with 454 sequencing. Our dataset includes twenty Triturus newts and represents all nine species. Bayesian analysis of population structure allocates all individuals to their respective species. The branching patterns obtained by data concatenation, Bayesian concordance analysis and coalescent-based estimations of the species tree differ from one another. The data concatenation based species tree shows high branch support but branching order is considerably affected by allele choice in the case of heterozygotes in the concatenation process. Bayesian concordance analysis expresses the conflict between individual gene trees for part of the Triturus species tree as low concordance factors. The coalescent-based species tree is relatively similar to a previously published species tree based upon morphology and full mtDNA and any conflicting internal branches are not highly supported. Our findings reflect high gene tree discordance due to incomplete lineage sorting (possibly aggravated by hybridization) in combination with low information content of the markers employed (as can be expected for relatively recent species radiations). This case study highlights the complexity of resolving rapid radiations and we acknowledge that to convincingly resolve the Triturus species tree even more genes will have to be consulted.
Journal Article
Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus)
2018
Environmental DNA (eDNA) analysis is a rapid, cost‐effective, non‐invasive biodiversity monitoring tool which utilises DNA left behind in the environment by organisms for species detection. The method is used as a species‐specific survey tool for rare or invasive species across a broad range of ecosystems. Recently, eDNA and “metabarcoding” have been combined to describe whole communities rather than focusing on single target species. However, whether metabarcoding is as sensitive as targeted approaches for rare species detection remains to be evaluated. The great crested newt Triturus cristatus is a flagship pond species of international conservation concern and the first UK species to be routinely monitored using eDNA. We evaluate whether eDNA metabarcoding has comparable sensitivity to targeted real‐time quantitative PCR (qPCR) for T. cristatus detection. Extracted eDNA samples (N = 532) were screened for T. cristatus by qPCR and analysed for all vertebrate species using high‐throughput sequencing technology. With qPCR and a detection threshold of 1 of 12 positive qPCR replicates, newts were detected in 50% of ponds. Detection decreased to 32% when the threshold was increased to 4 of 12 positive qPCR replicates. With metabarcoding, newts were detected in 34% of ponds without a detection threshold, and in 28% of ponds when a threshold (0.028%) was applied. Therefore, qPCR provided greater detection than metabarcoding but metabarcoding detection with no threshold was equivalent to qPCR with a stringent detection threshold. The proportion of T. cristatus sequences in each sample was positively associated with the number of positive qPCR replicates (qPCR score) suggesting eDNA metabarcoding may be indicative of eDNA concentration. eDNA metabarcoding holds enormous potential for holistic biodiversity assessment and routine freshwater monitoring. We advocate this community approach to freshwater monitoring to guide management and conservation, whereby entire communities can be initially surveyed to best inform use of funding and time for species‐specific surveys.
Environmental DNA (eDNA) metabarcoding has enormous potential for community biodiversity assessment but the detection sensitivity of this tool for single species, particularly rare species, within communities is relatively unexplored. We compared targeted real‐time quantitative PCR (qPCR) and eDNA metabarcoding for great crested newt (Triturus cristatus) detection across 532 ponds in the UK and found metabarcoding was less sensitive than qPCR depending on detection thresholds applied. However, sequence read count was correlated with number of positive qPCR replicates, cost of both methods was comparable, and metabarcoding revealed a variety of aquatic and terrestrial fauna alongside great crested newt, thus metabarcoding can be used for initial survey of water bodies to better inform species‐specific survey.
Journal Article
Seasonal variation in environmental DNA detection in sediment and water samples
by
Groombridge, Jim J.
,
Buxton, Andrew S.
,
Griffiths, Richard A.
in
Autumn
,
Biology and life sciences
,
Change detection
2018
The use of aquatic environmental DNA (eDNA) to detect the presence of species depends on the seasonal activity of the species in the sampled habitat. eDNA may persist in sediments for longer than it does in water, and analysing sediment could potentially extend the seasonal window for species assessment. Using the great crested newt as a model, we compare how detection probability changes across the seasons in eDNA samples collected from both pond water and pond sediments. Detection of both aquatic and sedimentary eDNA varied through the year, peaking in the summer (July), with its lowest point in the winter (January): in all seasons, detection probability of eDNA from water exceeded that from sediment. Detection probability of eDNA also varied between study areas, and according to great crested newt habitat suitability and sediment type. As aquatic and sedimentary eDNA show the same seasonal fluctuations, the patterns observed in both sample types likely reflect current or recent presence of the target species. However, given the low detection probabilities found in the autumn and winter we would not recommend using either aquatic or sedimentary eDNA for year-round sampling without further refinement and testing of the methods.
Journal Article