Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
956
result(s) for
"TrkA protein"
Sort by:
Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas
2019
Infant gliomas have paradoxical clinical behavior compared to those in children and adults: low-grade tumors have a higher mortality rate, while high-grade tumors have a better outcome. However, we have little understanding of their biology and therefore cannot explain this behavior nor what constitutes optimal clinical management. Here we report a comprehensive genetic analysis of an international cohort of clinically annotated infant gliomas, revealing 3 clinical subgroups. Group 1 tumors arise in the cerebral hemispheres and harbor alterations in the receptor tyrosine kinases
ALK
,
ROS1
,
NTRK
and
MET
. These are typically single-events and confer an intermediate outcome. Groups 2 and 3 gliomas harbor
RAS/MAPK
pathway mutations and arise in the hemispheres and midline, respectively. Group 2 tumors have excellent long-term survival, while group 3 tumors progress rapidly and do not respond well to chemoradiation. We conclude that infant gliomas comprise 3 subgroups, justifying the need for specialized therapeutic strategies.
Infant gliomas behave differently to their childhood or adult counterparts. Here, the authors perform a large-scale genetic analysis of these tumours, revealing genetic alterations which may offer therapeutic opportunities.
Journal Article
NTRK fusion-positive cancers and TRK inhibitor therapy
by
Scaltriti, Maurizio
,
Drilon, Alexander
,
Cocco, Emiliano
in
Breast cancer
,
Breast carcinoma
,
Clinical trials
2018
NTRK gene fusions involving either NTRK1, NTRK2 or NTRK3 (encoding the neurotrophin receptors TRKA, TRKB and TRKC, respectively) are oncogenic drivers of various adult and paediatric tumour types. These fusions can be detected in the clinic using a variety of methods, including tumour DNA and RNA sequencing and plasma cell-free DNA profiling. The treatment of patients with NTRK fusion-positive cancers with a first-generation TRK inhibitor, such as larotrectinib or entrectinib, is associated with high response rates (>75%), regardless of tumour histology. First-generation TRK inhibitors are well tolerated by most patients, with toxicity profiles characterized by occasional off-tumour, on-target adverse events (attributable to TRK inhibition in non-malignant tissues). Despite durable disease control in many patients, advanced-stage NTRK fusion-positive cancers eventually become refractory to TRK inhibition; resistance can be mediated by the acquisition of NTRK kinase domain mutations. Fortunately, certain resistance mutations can be overcome by second-generation TRK inhibitors, including LOXO-195 and TPX-0005 that are being explored in clinical trials. In this Review, we discuss the biology of NTRK fusions, strategies to target these drivers in the treatment-naive and acquired-resistance disease settings, and the unique safety profile of TRK inhibitors.
Journal Article
Molecular characterization of cancers with NTRK gene fusions
2019
Targeted inhibitors of neurotropic tyrosine kinases are highly effective in selected patients with gene fusions involving
NTRK1, NTRK2
, or
NTRK3
. These fusions are consistently detected in rare cancer types (e.g., secretory breast carcinoma and congenital infantile fibrosarcoma), but the occurrence of
NTRK
fusions in common cancers and their relationship to other therapy biomarkers are largely unexplored. Tissue samples from 11,502 patients were analyzed for 53 gene fusions and sequencing of 592 genes, along with an immunohistochemical evaluation of TrkA/B/C and PD-L1. Thirty-one cases (0.27% of the entire cohort) had
NTRK
fusions. The most common fusions were
ETV6:NTRK3
(
n
= 10) and
TPM3:NTRK1
(
n
= 6). Gliomas had the highest number of
NTRK
fusions (14/982, 1.4%), most commonly involving
NTRK2
(
n
= 9). Seventeen non-glioma cases with
NTRK
fusions included carcinomas of the lungs, thyroid, breast, cervix, colon, nasal cavity, cancer of unknown primary and soft tissue sarcomas. Strong and uniform Trk expression detected with a pan-Trk immunohistochemistry characterized 7/8
NTRK1
fusion cases and 8/9
NTRK2
fusion cases, while
NTRK3
fused cases were positive in 6/11 (55%) of cases. 29% of
NTRK
fusion cases had no other pathogenic genomic alteration. PD-L1 expression was observed in 23% of
NTRK
fused cases while high tumor DNA microsatellite instability was detected in two cases. We confirm the rarity of
NTRK
genes fusions outside the brain malignancies.
NTRK
inhibitors alone or combined with immune checkpoint inhibitors may be a therapeutic option for a substantial proportion of these patients. Strategies for detection of the
NTRK
fusion-driven cancers may include immunohistochemistry, but gene fusion detection remains the most reliable tool.
Journal Article
NEUROPILIN-1 INHIBITION SUPPRESSES NERVE-GROWTH FACTOR SIGNALING AND NOCICEPTION IN PAIN MODELS
2025
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain, yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a coreceptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that the C-terminal R/KXXR/K NGF motif interacts with the extracellular \"b\" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G α interacting protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched coreceptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited nonopioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.
Journal Article
NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice
2017
Sensory nerves emanating from the dorsal root extensively innervate the surfaces of mammalian bone, a privileged location for the regulation of biomechanical signaling. Here, we show that NGF-TrkA signaling in skeletal sensory nerves is an early response to mechanical loading of bone and is required to achieve maximal load-induced bone formation. First, the elimination of TrkA signaling in mice harboring mutant TrkAF592A alleles was found to greatly attenuate load-induced bone formation induced by axial forelimb compression. Next, both in vivo mechanical loading and in vitro mechanical stretch were shown to induce the profound up-regulation of NGF in osteoblasts within 1 h of loading. Furthermore, inhibition of TrkA signaling following axial forelimb compression was observed to reduce measures of Wnt/β-catenin activity in osteocytes in the loaded bone. Finally, the administration of exogenous NGF to wild-type mice was found to significantly increase load-induced bone formation and Wnt/β-catenin activity in osteocytes. In summary, these findings demonstrate that communication between osteoblasts and sensory nerves through NGF-TrkA signaling is essential for load-induced bone formation in mice.
Journal Article
Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner
2019
The nervous system regulates host immunity in complex ways. Vertebrate olfactory sensory neurons (OSNs) are located in direct contact with pathogens; however, OSNs’ ability to detect danger and initiate immune responses is unclear. We report that nasal delivery of rhabdoviruses induces apoptosis in crypt OSNs via the interaction of the OSN TrkA receptor with the viral glycoprotein in teleost fish. This signal results in electrical activation of neurons and very rapid proinflammatory responses in the olfactory organ (OO), but dampened inflammation in the olfactory bulb (OB). CD8α⁺ cells infiltrate the OO within minutes of nasal viral delivery, and TrkA blocking, but not caspase-3 blocking, abrogates this response. Infiltrating CD8α⁺ cells were TCRαβ T cells with a nonconventional phenotype that originated from the microvasculature surrounding the OB and not the periphery. Nasal delivery of viral glycoprotein (G protein) recapitulated the immune responses observed with the whole virus, and antibody blocking of viral G protein abrogated these responses. Ablation of crypt neurons in zebrafish resulted in increased susceptibility to rhabdoviruses. These results indicate a function for OSNs as a first layer of pathogen detection in vertebrates and as orchestrators of nasal–CNS antiviral immune responses.
Journal Article
Accurate de novo design of heterochiral protein–protein interactions
2024
Abiotic
d
-proteins that selectively bind to natural
l
-proteins have gained significant biotechnological interest. However, the underlying structural principles governing such heterochiral protein–protein interactions remain largely unknown. In this study, we present the de novo design of
d
-proteins consisting of 50–65 residues, aiming to target specific surface regions of
l
-proteins or
l
-peptides. Our designer
d
-protein binders exhibit nanomolar affinity toward an artificial
l
-peptide, as well as two naturally occurring proteins of therapeutic significance: the D5 domain of human tropomyosin receptor kinase A (TrkA) and human interleukin-6 (IL-6). Notably, these
d
-protein binders demonstrate high enantiomeric specificity and target specificity. In cell-based experiments, designer
d
-protein binders effectively inhibited the downstream signaling of TrkA and IL-6 with high potency. Moreover, these binders exhibited remarkable thermal stability and resistance to protease degradation. Crystal structure of the designed heterochiral
d
-protein–
l
-peptide complex, obtained at a resolution of 2.0 Å, closely resembled the design model, indicating that the computational method employed is highly accurate. Furthermore, the crystal structure provides valuable information regarding the interactions between helical
l
-peptides and
d
-proteins, particularly elucidating a novel mode of heterochiral helix–helix interactions. Leveraging the design of
d
-proteins specifically targeting
l
-peptides or
l
-proteins opens up avenues for systematic exploration of the mirror-image protein universe, paving the way for a diverse range of applications.
Journal Article
Spontaneous regression of neuroblastoma
2018
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Journal Article
Inhibiting TRK Proteins in Clinical Cancer Therapy
by
Lo, Hui-Wen
,
Lange, Allison
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Alternative splicing
2018
Gene rearrangements resulting in the aberrant activity of tyrosine kinases have been identified as drivers of oncogenesis in a variety of cancers. The tropomyosin receptor kinase (TRK) family of tyrosine receptor kinases is emerging as an important target for cancer therapeutics. The TRK family contains three members, TRKA, TRKB, and TRKC, and these proteins are encoded by the genes NTRK1, NTRK2, and NTRK3, respectively. To activate TRK receptors, neurotrophins bind to the extracellular region stimulating dimerization, phosphorylation, and activation of downstream signaling pathways. Major known downstream pathways include RAS/MAPK/ERK, PLCγ, and PI3K/Akt. While being rare in most cancers, TRK fusions with other proteins have been well-established as oncogenic events in specific malignancies, including glioblastoma, papillary thyroid carcinoma, and secretory breast carcinomas. TRK protein amplification as well as alternative splicing events have also been described as contributors to cancer pathogenesis. For patients harboring alterations in TRK expression or activity, TRK inhibition emerges as an important therapeutic target. To date, multiple trials testing TRK-inhibiting compounds in various cancers are underway. In this review, we will summarize the current therapeutic trials for neoplasms involving NTKR gene alterations, as well as the promises and setbacks that are associated with targeting gene fusions.
Journal Article
DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway
by
Bornstein, S R
,
Tsatsanis, C
,
Grossklaus, S
in
AKT1 protein
,
AKT2 protein
,
Cyclic AMP response element-binding protein
2018
Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid hormone in humans, produced by the adrenals, the gonads and the brain. DHEA was previously shown to bind to the nerve growth factor receptor, tropomyosin-related kinase A (TrkA), and to thereby exert neuroprotective effects. Here we show that DHEA reduces microglia-mediated inflammation in an acute lipopolysaccharide-induced neuro-inflammation model in mice and in cultured microglia in vitro. DHEA regulates microglial inflammatory responses through phosphorylation of TrkA and subsequent activation of a pathway involving Akt1/Akt2 and cAMP response element-binding protein. The latter induces the expression of the histone 3 lysine 27 (H3K27) demethylase Jumonji d3 (Jmjd3), which thereby controls the expression of inflammation-related genes and microglial polarization. Together, our data indicate that DHEA-activated TrkA signaling is a potent regulator of microglia-mediated inflammation in a Jmjd3-dependent manner, thereby providing the platform for potential future therapeutic interventions in neuro-inflammatory pathologies.
Journal Article