Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
850 result(s) for "Tryptophan hydroxylase"
Sort by:
Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice
Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65 −/− ) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65 −/− mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65 −/− mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65 −/− mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.
Hyperinsulinemia-induced upregulation of adipocyte TPH2 contributes to peripheral serotonin production, metabolic dysfunction, and obesity
Tryptophan hydroxylase (TPH) is a rate-limiting enzyme for serotonin or 5-hydroxytryptamine (5-HT) synthesis. Previously, adipocyte TPH1 has been linked to increased adipose 5-HT, reduced brown adipose tissue (BAT) thermogenesis, and obesity. However, the role of TPH2, a neural isoform highly expressed in obese adipose tissue, is unknown. Here, we report that adipose tissue expression of TPH2 is dramatically elevated in mice with diet-induced obesity (DIO) and ob/ob mice, as well as in obese humans. In mice fed a high-fat diet, adipocyte TPH2 deficiency improved DIO-induced metabolic complications, enhanced BAT thermogenesis, and increased intestinal energy-harvesting efficiency without affecting adiposity. Conversely, TPH2 overexpression in epididymal adipocytes of chow-fed mice raised adipose and plasma 5-HT levels, suppressed BAT thermogenesis, and exacerbated obesity and metabolic dysfunction. We found that obesity-induced hyperinsulinemia upregulated adipocyte TPH2 expression via activation of mechanistic target of rapamycin complex 1 and SREBP1. In humans, TPH2 mRNA levels in subcutaneous adipose tissue, but not those of TPH1, are positively correlated with fasting plasma insulin concentrations. In summary, our study demonstrates that obesity-associated increases in adipocyte TPH2 can regulate distal tissue physiology and energy metabolism, suggesting that TPH2 could be a potential therapeutic target for obesity and its associated complications.
Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxytryptophan (5-HTP) the first and rate-limiting step of serotonin (5-HT) synthesis in the mammalian brain. Some mutations in the Tph2 gene reducing TPH2 activity are associated with hereditary depressive disorders. The P447R substitution in the mouse TPH2 molecule reduces its thermal stability in vitro and its activity in the brain. The effects of iron ions on thermal stability in vitro and the activity in the brain of the mutant TPH2 were investigated. In the in vitro experiment effects of 0.01, 0.05, and 0.2 mM of FeSO4 and FeCl3 on the enthalpy (ΔH) and Gibbs free energy (ΔG) of thermal denaturation of the mutant TPH2 extracted from the midbrain of Balb/c mice were assayed. All FeSO4 concentrations and 0.05 and 0.2 mM concentrations of FeCl3 increased these thermodynamic characteristics of the mutant TPH2. Repeated (for 7 days) intramuscular administration of Fe(III) hydroxide dextran complex (15 and 30 mg/kg/day) increased TPH2 activity in the hippocampus, but not in the midbrain in Balb/c mice. Repeated (for 7 days) intramuscular administration of Fe(III) hydroxide dextran complex (15 and 30 mg/kg/day) together with thiamine (8 mg/kg/day) and cyanocobalamin (0.8 mg/kg/day) increased TPH2 activity in the hippocampus, while 30 mg/kg of Fe(III) hydroxide dextran also increased the enzyme activity in the midbrain in Balb/c mice. These results are the first evidence for chaperone-like effects of iron ions on thermal stability in vitro and activity in the brain of the mutant TPH2.
Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan
Early detection and accurate monitoring of chronic kidney disease (CKD) could improve care and retard progression to end-stage renal disease. Here, using untargeted metabolomics in 2155 participants including patients with stage 1–5 CKD and healthy controls, we identify five metabolites, including 5-methoxytryptophan (5-MTP), whose levels strongly correlate with clinical markers of kidney disease. 5-MTP levels decrease with progression of CKD, and in mouse kidneys after unilateral ureteral obstruction (UUO). Treatment with 5-MTP ameliorates renal interstitial fibrosis, inhibits IκB/NF-κB signaling, and enhances Keap1/Nrf2 signaling in mice with UUO or ischemia/reperfusion injury, as well as in cultured human kidney cells. Overexpression of tryptophan hydroxylase-1 (TPH-1), an enzyme involved in 5-MTP synthesis, reduces renal injury by attenuating renal inflammation and fibrosis, whereas TPH-1 deficiency exacerbates renal injury and fibrosis by activating NF-κB and inhibiting Nrf2 pathways. Together, our results suggest that TPH-1 may serve as a target in the treatment of CKD. Accurate monitoring of chronic kidney disease (CKD) progression is essential for efficient disease management. Here Chen et al. identify five serum metabolites in patients with stage 1–5 CKD whose levels associate with disease progression, and find that 5-methoxytryptophan and its regulatory enzyme TPH-1 exert anti-fibrotic effects in mouse models of kidney injury.
Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation
Despite increasing evidence suggests that serotonin (5-HT) can influence neurogenesis, neuronal migration and circuitry formation, the precise role of 5-HT on central nervous system (CNS) development is only beginning to be elucidated. Moreover, how changes in serotonin homeostasis during critical developmental periods may have etiological relevance to human mental disorders, remains an unsolved question. In this study we address the consequences of 5-HT synthesis abrogation on CNS development using a knock-in mouse line in which the tryptophan hydroxylase 2 (Tph2) gene is replaced by the eGFP reporter. We report that lack of brain 5-HT results in a dramatic reduction of body growth rate and in 60% lethality within the first 3 weeks after birth, with no gross anatomical changes in the brain. Thanks to the specific expression of the eGFP, we could highlight the serotonergic system independently of 5-HT immunoreactivity. We found that lack of central serotonin produces severe abnormalities in the serotonergic circuitry formation with a brain region- and time- specific effect. Indeed, we observed a striking reduction of serotonergic innervation to the suprachiasmatic and thalamic paraventricular nuclei, while a marked serotonergic hyperinnervation was found in the nucleus accumbens and hippocampus of Tph2∷eGFP mutants. Finally, we demonstrated that BDNF expression is significantly up-regulated in the hippocampus of mice lacking brain 5-HT, mirroring the timing of the appearance of hyperinnervation and thus unmasking a possible regulatory feedback mechanism tuning the serotonergic neuronal circuitry formation. On the whole, these findings reveal that alterations of serotonin levels during CNS development affect the proper wiring of the brain that may produce long-lasting changes leading to neurodevelopmental disorders.
Impact of Serotonin Deficiency on Circadian Dopaminergic Rhythms
Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain—including those involving serotonin and dopamine—exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.
IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor
CD8 + T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8 + T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8 + T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8 + T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion. IL-2 is a classic T cell growth factor. Huang and colleagues demonstrate, however, that chronic IL-2 stimulation leads to a new exhaustion pathway that impairs antitumor immune responses.
The C1473G Mutation in the Mouse Tph2 Gene: From Molecular Mechanism to Biological Consequences
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxy tryptophan—the key step of 5-HT synthesis in the mammalian brain. Some mutations in the human hTPH2 gene are associated with psychopathologies and resistance to antidepressant therapy. The C1473G polymorphism in the mouse Tph2 gene decreases the TPH2 activity in the mouse brain. In the present paper, B6-1473C and B6-1473G congenic mice that were different only in the C > G substitution were used. The molecular mechanism of decrease in the mutant enzyme activity and some physiological and behavioral traits affected by this mutation were revealed for the first time. Analysis of thermal denaturation curves in vitro revealed that the C > G substitution reduces the free energy of denaturation, stability and lifetime of mutant TPH2. Later, we evaluated the effect of the 1473G allele on the hierarchical state, competition for a sexual partner in adult mice, mouse embryos, hind legs dystonia and the response to LPS treatment in young mice. No effect of this mutation on the hierarchical state and competition for a female was observed in adult males. The C > G substitution does not affect survival, body mass or the TPH activity in the brain of 19-day-old mouse embryos. At the same time, we found that the 1473G allele causes hind legs dystonia in juvenile (3 weeks old) mice, which can affect their escape capability in threatening situations. Moreover, a significant increase in the vulnerability to LPS in juvenile B6-1473G males was shown: a single ip LPS administration killed about 40% of young mutant mice, but not wild-type ones. The body mass of mutant males was lower compared to wild-type ones, which also can indirectly decrease their concurrent and reproductive success.
Tryptophan hydroxylase 1 drives glioma progression by modulating the serotonin/L1CAM/NF-κB signaling pathway
Background Glioma is one of the main causes of cancer-related mortality worldwide and is associated with high heterogeneity. However, the key players determining the fate of glioma remain obscure. In the present study, we shed light on tumor metabolism and aimed to investigate the role of tryptophan hydroxylase 1 (TPH-1) in the advancement of glioma. Method Herein, the levels of TPH-1 expression in glioma tissues were evaluated using The Cancer Genome Atlas (TCGA) database. Further, the proliferative characteristics and migration ability of TPH-1 overexpressing LN229/T98G cells were evaluated. Additionally, we performed a cytotoxicity analysis using temozolomide (TMZ) in these cells. We also examined the tumor growth and survival time in a mouse model of glioma treated with chemotherapeutic agents and a TPH-1 inhibitor. Results The results of both clinical and experimental data showed that excess TPH-1 expression resulted in sustained glioma progression and a dismal overall survival in these patients. Mechanistically, TPH-1 increased the production of serotonin in glioma cells. The elevated serotonin levels then augmented the NF-κB signaling pathway through the upregulation of the L1-cell adhesion molecule (L1CAM), thereby contributing to cellular proliferation, invasive migration, and drug resistance. In vivo experiments demonstrated potent antitumor effects, which benefited further from the synergistic combination of TMZ and LX-1031. Conclusion Taken together, these data suggested that TPH-1 facilitated cellular proliferation, migration, and chemoresistance in glioma through the serotonin/L1CAM/NF-κB pathway. By demonstrating the link of amino acid metabolic enzymes with tumor development, our findings may provide a potentially viable target for therapeutic manipulation aimed at eradicating glioma.
Parallel pathways for serotonin biosynthesis and metabolism in C. elegans
The neurotransmitter serotonin plays a central role in animal behavior and physiology, and many of its functions are regulated via evolutionarily conserved biosynthesis and degradation pathways. Here we show that in Caenorhabditis elegans , serotonin is abundantly produced in nonneuronal tissues via phenylalanine hydroxylase, in addition to canonical biosynthesis via tryptophan hydroxylase in neurons. Combining CRISPR–Cas9 genome editing, comparative metabolomics and synthesis, we demonstrate that most serotonin in C. elegans is incorporated into N -acetylserotonin-derived glucosides, which are retained in the worm body and further modified via the carboxylesterase CEST-4. Expression patterns of CEST-4 suggest that serotonin or serotonin derivatives are transported between different tissues. Last, we show that bacterial indole production interacts with serotonin metabolism via CEST-4. Our results reveal a parallel pathway for serotonin biosynthesis in nonneuronal cell types and further indicate that serotonin-derived metabolites may serve distinct signaling functions and contribute to previously described serotonin-dependent phenotypes. Untargeted comparative metabolomics revealed serotonin biosynthesis and metabolism pathways in nonneuronal tissues that contribute to established serotonin-dependent phenotypes in C. elegans .