Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
126
result(s) for
"Tubular epithelium"
Sort by:
Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues
by
Davies, Jamie A.
,
Unbekandt, Mathieu
in
Animals
,
Biological and medical sciences
,
Cell Aggregation - genetics
2010
Here we describe a novel method in which embryonic kidneys are dissociated into single-cell suspensions and then reaggregated to form organotypic renal structures. Kidney cell reaggregates were transiently cultured with small-molecule Rho kinase inhibitors, which caused ureteric bud structures to form and induced formation of nephrons. These structures displayed normal morphology, expressed appropriate differentiation markers, and were connected at their distal ends to the ureteric buds, thus forming artificial tissues very similar to those found in normal embryonic kidneys. Using this culture method, it was straightforward to make fine-grained chimeras by mixing different cell types or by mixing cells transfected with different constructs before reaggregation. Chimeric renal cultures were formed using mixtures of unmarked normal host embryonic kidney cells and CellTracker-marked WT1 siRNA-carrying cells to test the hypothesis that WT1 is important to a cell's ability to contribute to nephron formation. We found a significant reduction in the ability of WT1 knockdown cells to contribute to nephron formation. This dissociation and reaggregation procedure can also be applied to embryonic lungs and to form coarse-grained hybrid tissues from mixtures of lung and kidney cells. Overall, our protocol allows very simple mixing of cells from different sources or cells subjected to different pretreatments to make fine-grained, highly dispersed chimera tissues.
Journal Article
Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase
by
Niewczas, Monika A.
,
Vaidya, Vishal S.
,
Bonventre, Joseph V.
in
Acetylglucosaminidase - urine
,
Adult
,
Albuminuria - complications
2011
Elevated urinary albumin excretion in patients with type 1 diabetes reverts to normoalbuminuria in a majority of patients but advances toward proteinuria in some. In order to gain valuable insights into the early pathophysiology of diabetic nephropathy we evaluated the association of kidney tubular injury biomarkers with changes in albuminuria in patients with type 1 diabetes mellitus. Urine levels of kidney injury molecule-1 (KIM-1), N-acetyl-β-D-glucosaminidase (NAG), and some inflammatory markers were determined in 38 healthy individuals and 659 patients with type 1 diabetes mellitus having varying degrees of albuminuria. Urinary interleukin-6, CXCL10/IP-10, NAG, and KIM-1 levels were very low in healthy individuals, increased in type 1 patients with normoalbuminuria, and were highest in diabetic patients that had microalbuminuria. Low baseline concentrations of urinary KIM-1 and NAG both individually and collectively were significantly associated with the regression of microalbuminuria over the subsequent 2 years; an effect independent of clinical characteristics. Progression and regression of microalbuminuria were unrelated to urinary levels of interleukins 6 and 8, CXCL10/IP-10, and monocyte chemoattractant protein-1. Thus our results show that lower urinary KIM-1 and NAG levels were associated with the regression of microalbuminuria in type 1 diabetes mellitus. Hence, tubular dysfunction is a critical component of the early course of diabetic nephropathy.
Journal Article
New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubule
by
Glaudemans, Bob
,
Hoenderop, Joost G J
,
Knoers, Nine V A M
in
Biological Transport
,
Genetic Predisposition to Disease
,
Humans
2010
The renal distal convoluted tubule (DCT) has an essential role in maintaining systemic magnesium (Mg(2+)) concentration. The DCT is the final determinant of plasma Mg(2+) levels, as the more distal nephron segments are largely impermeable to Mg(2+). In the past decade, positional candidate strategies in families with inherited forms of hypomagnesemia have led to the identification of genes involved in Mg(2+) handling. A large fraction of this resides in the DCT, namely, (i) the transient receptor potential channel melastatin subtype 6 (TRPM6), a divalent cation-permeable channel located at the luminal membrane of the DCT, facilitates Mg(2+) entry from the pro-urine into the cell; (ii) the epidermal growth factor is a novel hormone regulating active Mg(2+) transport through TRPM6; (iii) the voltage-gated K(+) channel, Kv1.1, establishes a favorable luminal membrane potential for TRPM6-mediated Mg(2+) transport; (iv) the Na(+)/K(+)-ATPase gamma-subunit (gamma-Na(+)/K(+)-ATPase) was identified as mutated protein in a family with isolated dominant hypomagnesemia. The molecular mechanism by which gamma-Na(+)/K(+)-ATPase is involved in DCT Mg(2+) handling remains unknown; (v) a high percentage of patients with mutations in the renal transcription factor HNF1B (hepatocyte nuclear factor 1 homeobox B) gene develop hypomagnesemia; and (vi) Gitelman and EAST/SeSAME syndrome patients suffer from a similar tubulopathy due to mutations in NCC (NaCl cotransporter) and Kir4.1, respectively. In these patients, decreased expression of TRPM6 is proposed to cause hypomagnesemia. Insights into the molecular mechanisms of the identified genes, as well as the identification of novel genes, will further improve our knowledge about renal Mg(2+) handling.
Journal Article
Gliquidone Alleviates Diabetic Nephropathy by Inhibiting Notch/Snail Signaling Pathway
by
Xie, Zhuochao
,
Liu, Jialin
,
Tian, Hengyu
in
Breast cancer
,
Cell adhesion & migration
,
Diabetes
2018
Background/Aims: Diabetic nephropathy is a common complication of diabetes. This study explored the renal protective effect and possible mechanism of gliquidone in mice with diabetic nephropathy. Methods: Animal model of diabetic nephropathy was established in KKAy mice. The renal protective effect of gliquidone was studied by evaluating the kidney function through measures of urinary protein, blood urea nitrogen (BUN), serum creatinine (Scr) and serum triglyceride (TG) that were performed using an automatic biochemical analyzer. The levels of oxidative stress indicators, such as nitric oxide (NO), superoxide dismutase (SOD) and malondialdehyde (MDA), were evaluated in renal tissue homogenates using the automatic biochemical analyzer. The inhibitory effect of gliquidone on renal interstitial fibrosis and its association with Notch / Snail1 signaling pathway in diabetic nephropathy was investigated using molecular biological techniques. Results: It was found that low-, medium- and high-dose gliquidone improved the mice’s general health condition, such as mental status, fur condition, eating, and drinking. Gliquidone reduced the body weight and the kidney weight /body weight ratio of mice. Gliquidone improved the kidney function, indicated by reductions in urinary protein, blood urea nitrogen, and serum creatinine and triglyceride. Gliquidone treatment increased levels of nitric oxide and superoxide dismutase, but decreased level of malondialdehyde. The expression of Jagged1/Notch1/hes1/Snail1/α-SMA decreased, while the expression of E-cadherin increased in gliquidone-treated kidneys. High dose gliquidone showed the best effect, one that was similar to that of the positive control drug irbesartan. Conclusion: Taken together, our results suggested that gliquidone can ameliorate the diabetic symptoms of diabetic nephropathy through inhibiting Notch / Snail1 signaling pathway, improving anti -oxidative response and delaying renal interstitial fibrosis. The efficacy of gliquidone is dose-dependent.
Journal Article
Differences in the Susceptibility of Human Tubular Epithelial Cells for Infection with Orthohantaviruses
by
Friedrich, Ann-Kathrin
,
Uhrig, Josephine
,
Gruber, Gefion
in
acute kidney injury
,
Acute renal failure
,
Antibodies
2023
Diseases induced by infection with pathogenic orthohantaviruses are characterized by a pronounced organ-specific manifestation. Pathogenic Eurasian orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) with often massive proteinuria. Therefore, the use of a relevant kidney cell culture would be favorable to analyze the underlying cellular mechanisms of orthohantavirus-induced acute kidney injury (AKI). We tested different human tubular epithelial cell lines for their suitability as an in vitro infection model. Permissiveness and replication kinetics of highly pathogenic Hantaan virus (HTNV) and non-/low-pathogenic Tula virus (TULV) were analyzed in tubular epithelial cell lines and compared to human primary tubular epithelial cells. Ana-lysis of the cell line HK-2 revealed the same results for viral replication, morphological and functional effects as observed for HTNV in primary cells. In contrast, the cell lines RPTEC/TERT1 and TH1 demonstrated only poor infection rates after inoculation with HTNV and are unusable as an infection model. While pathogenic HNTV infects primary tubular and HK-2 cells, non-/low-pathogenic TULV infects neither primary tubular cells nor the cell line HK-2. Our results show that permissiveness of renal cells varies between orthohantaviruses with differences in pathogenicity and that HK-2 cells demonstrate a suitable in vitro model to study viral tropism and pathogenesis of orthohantavirus-induced AKI.
Journal Article
Vasopressin regulation of renal sodium excretion
Vasopressin promotes renal water reabsorption decreasing excretion of free water to dilute plasma and lower serum osmolality. We have good understanding of the causes, mechanisms and consequences of this vasopressin-dependent renal water movement. In comparison, vasopressin actions on renal electrolytes including sodium excretion and its consequences have been less well understood. This is so for investigation and discussions of the renal actions of vasopressin are framed primarily around water metabolism rather than any direct effect on salt handling. The fact that water moves in biological systems, to include the mammalian kidney, only by osmosis passively down its concentration gradient is implicit in such discussion but often not overtly addressed. This can cause confusion. Moreover, although vasopressin action on renal sodium excretion via the V2 receptor is critical to water transport, it is masked easily being situational—for instance, dependent on hydration state. It is now clear that an increase in sodium reabsorption along the distal nephron (CNT + CD) mediated by activation of the epithelial Na+ channel (ENaC) by vasopressin makes an important contribution to maintenance of the axial corticomedullary osmotic gradient necessary for maximal water reabsorption. Thus, we need to modify slightly our understanding of vasopressin and its renal actions to include the idea that while vasopressin decreases free water excretion to dilute plasma, it does this, in part, by promoting sodium reabsorption and consequently decreasing sodium excretion via ENaC activated along the distal nephron.
Journal Article
MG53 protects against contrast-induced acute kidney injury by reducing cell membrane damage and apoptosis
by
Hu, Yun-hui
,
Liu, Chao
,
Liu, Yu-kai
in
Acute Kidney Injury - chemically induced
,
Acute Kidney Injury - pathology
,
Acute Kidney Injury - prevention & control
2020
Mitsugumin 53 (MG53) is a tripartite motif family protein that has been reported to attenuate injury via membrane repair in different organs. Contrast-induced acute kidney injury (CI-AKI) is a common complication caused by the administration of iodinated contrast media (CM). While the cytotoxicity induced by CM leading to tubular cell death may be initiated by cell membrane damage, we wondered whether MG53 alleviates CI-AKI. This study was designed to investigate the effect of MG53 on CI-AKI and the underlying mechanism. A rat model of CI-AKI was established, and CI-AKI induced the translocation of MG53 from serum to injury sites on the renal proximal tubular (RPT) epithelia, as illustrated by immunoblot analysis and immunohistochemical staining. Moreover, pretreatment of rats with recombinant human MG53 protein (rhMG53, 2 mg/mL) alleviated iopromide-induced injury in the kidney, which was determined by measuring serum creatinine, blood urea nitrogen and renal histological changes. In vitro studies demonstrated that exposure of RPT cells to iopromide (20, 40, and 80 mg/mL) caused cell membrane injury and cell death, which were attenuated by rhMG53 (10 and 50 μg/mL). Mechanistically, MG53 translocated to the injury site on RPT cells and bound to phosphatidylserine to protect RPT cells from iopromide-induced injury. In conclusion, MG53 protects against CI-AKI through cell membrane repair and reducing cell apoptosis; therefore, rhMG53 might be a potential effective means to treat or prevent CI-AKI.
Journal Article
Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy
2018
Inflammation and lipid disorders play crucial roles in synergistically accelerating the progression of diabetic nephropathy (DN). In this study we investigated how inflammation and lipid disorders caused tubulointerstitial injury in DN in vivo and in vitro. Diabetic db/db mice were injected with 10% casein (0.5 mL, sc) every other day for 8 weeks to cause chronic inflammation. Compared with db/db mice, casein-injected db/db mice showed exacerbated tubulointerstitial injury, evidenced by increased secretion of extracellular matrix (ECM) and cholesterol accumulation in tubulointerstitium, which was accompanied by activation of the CXC chemokine ligand 16 (CXCL16) pathway. In the in vitro study, we treated HK-2 cells with IL-1β (5 ng/mL) and high glucose (30 mmol/L). IL-1β treatment increased cholesterol accumulation in HK-2 cells, leading to greatly increased ROS production, ECM protein expression levels, which was accompanied by the upregulated expression levels of proteins in the CXCL16 pathway. In contrast, after CXCL16 in HK-2 cells was knocked down by siRNA, the IL-1β-deteriorated changes were attenuated. In conclusion, inflammation accelerates renal tubulointerstitial lesions in mouse DN via increasing the activity of CXCL16 pathway.
Journal Article
Minimal Kidney Disease Phenotype in Shroom3 Heterozygous Null Mice
by
Gros, Robert
,
Ko, Doyun
,
Paul, Amy
in
Kidney diseases
,
Original Basic Research
,
Protein expression
2023
Background:
Shroom family member 3 (SHROOM3) encodes an actin-associated protein that regulates epithelial morphology during development. Several genome-wide association studies (GWAS) have identified genetic variances primarily in the 5’ region of SHROOM3, associated with chronic kidney disease (CKD) and poor transplant outcomes. These genetic variants are associated with alterations in Shroom3 expression.
Objective:
Characterize the phenotypic abnormalities associated with reduced Shroom3 expression in postnatal day 3-, 1-month and 3-month-old mice.
Methods:
The Shroom3 protein expression pattern was determined by immunofluorescence. We generated Shroom3 heterozygous null mice (Shroom3Gt/+) and performed comparative analyses with wild type littermates based on somatic and kidney growth, gross renal anatomy, renal histology, renal function at postnatal day 3, 1 month, and 3 months.
Results:
The Shroom3 protein expression localized to the apical regions of medullary and cortical tubular epithelium in postnatal wild type kidneys. Co-immunofluorescence studies confirmed protein expression localized to the apical side of the tubular epithelium in proximal convoluted tubules, distal convoluted tubules, and collecting ducts. While Shroom3 heterozygous null mice exhibited reduced Shroom3 protein expression, no differences in somatic and kidney growth were observed when compared to wild type mice. Although, rare cases of unilateral hypoplasia of the right kidney were observed at postnatal 1 month in Shroom3 heterozygotes. Yet renal histological analysis did not reveal any overt abnormalities in overall kidney structure or in glomerular and tubular organization in Shroom3 heterozygous null mice when compared to wild type mice. Analysis of the apical-basolateral orientation of the tubule epithelium demonstrated alterations in the proximal convoluted tubules and modest disorganization in the distal convoluted tubules at 3 months in Shroom3 heterozygotes. Additionally, these modest abnormalities were not accompanied by tubular injury or physiological defects in renal and cardiovascular function.
Conclusion:
Taken together, our results describe a mild kidney disease phenotype in adult Shroom3 heterozygous null mice, suggesting that Shroom3 expression and function may be required for proper structure and maintenance of the various tubular epithelial parenchyma of the kidney.
Journal Article
A role for extrarenal cells in the regeneration following acute renal failure
by
Gupta, Sandeep
,
Verfaillie, Catherine
,
Kim, Youngki
in
Acute Kidney Injury - pathology
,
Acute Kidney Injury - physiopathology
,
acute tubular necrosis
2002
A role for extrarenal cells in the regeneration following acute renal failure.
Recovery of renal function following acute tubular necrosis (ATN) is dependent on the replacement of necrotic tubular cells with functional tubular epithelium. The source of these new tubular cells is thought to be resident renal tubular cells. The discovery of pluripotent bone marrow-derived stem cells has led to a reexamination of the cellular source and processes involved in the recovery from organ injury.
To test the hypothesis in humans that extrarenal cells participate in the recovery following ATN, we examined the origin of tubular cells in male patients with resolving ATN who had received a kidney transplant from a female donor. Immunohistochmistry of kidney biopsies was performed to identify renal tubular epithelial cells (cytokeratin positive) and leukocytes (CD45 positive). Fluorescent in-situ hybridization was used to detect Y chromosome containing cells with DAPI serving as a nuclear stain. All staining was performed on the same section.
The Y chromosome was detected in approximately 40% of tubular cell nuclei in male kidneys (positive control) and in no nuclei of female kidneys (negative control). In male recipients of female kidneys who developed ATN, 1% of tubules contained Y chromosome cells defined by their morphology, positive staining for cytokeratin, and negative staining for CD45. When present, multiple cells in a positive tubule stained for the Y chromosome. No Y chromosome containing tubular cells were seen in similar sex mismatched transplants in male recipients who did not develop ATN, suggesting that recipient derived cells do not routinely repopulate the transplanted kidney.
This proof-of-principle clinical observation demonstrates that extrarenal cells can participate in the regenerative response following ATN. These findings provide rationale for the cellular therapy of acute renal failure.
Journal Article