Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
842 result(s) for "Tumor Microenvironment - radiation effects"
Sort by:
Therapeutic targeting of the hypoxic tumour microenvironment
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.Hypoxia is a common feature of tumours, contributes to many of the hallmarks of cancer and influences responses to anticancer therapies. Thus, strategies to eliminate and/or exploit tumour hypoxia have long been explored, although with limited success to date. Herein, the authors describe new insights into hypoxia biology, discuss the implications of these advances for novel hypoxia-directed therapeutic strategies, and review the progress made with longstanding methods for targeting hypoxic tumours.
Immunological impact of cell death signaling driven by radiation on the tumor microenvironment
Therapeutic irradiation of the tumor microenvironment causes differential activation of pro-survival and pro-death pathways in malignant, stromal, endothelial and immune cells, hence causing a profound cellular and biological reconfiguration via multiple, non-redundant mechanisms. Such mechanisms include the selective elimination of particularly radiosensitive cell types and consequent loss of specific cellular functions, the local release of cytokines and danger signals by dying radiosensitive cells, and altered cytokine secretion by surviving radioresistant cells. Altogether, these processes create chemotactic and immunomodulatory cues for incoming and resident immune cells. Here we discuss how cytoprotective and cytotoxic signaling modules activated by radiation in specific cell populations reshape the immunological tumor microenvironment. Radiation therapy has for decades been a standard form of treatment for many cancers. A Review by Galluzzi and colleagues explores the effects of radiation therapy in the context of the immune response.
Inflammatory microenvironment remodelling by tumour cells after radiotherapy
The development of immune checkpoint inhibitors (ICIs) is revolutionizing the way we think about cancer treatment. Even so, for most types of cancer, only a minority of patients currently benefit from ICI therapies. Intrinsic and acquired resistance to ICIs has focused research towards new combination therapy approaches that seek to increase response rates, the depth of remission and the durability of benefit. In this Review, we describe how radiotherapy, through its immunomodulating effects, represents a promising combination partner with ICIs. We describe how recent research on DNA damage response (DDR) inhibitors in combination with radiotherapy may be used to augment this approach. Radiotherapy can kill cancer cells while simultaneously triggering the release of pro-inflammatory mediators and increasing tumour-infiltrating immune cells – phenomena often described colloquially as turning immunologically ‘cold’ tumours ‘hot’. Here, we focus on new developments illustrating the key role of tumour cell-autonomous signalling after radiotherapy. Radiotherapy-induced tumour cell micronuclei activate cytosolic nucleic acid sensor pathways, such as cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING), and propagation of the resulting inflammatory signals remodels the immune contexture of the tumour microenvironment. In parallel, radiation can impact immunosurveillance by modulating neoantigen expression. Finally, we highlight how tumour cell-autonomous mechanisms might be exploited by combining DDR inhibitors, ICIs and radiotherapy.This Review focuses on the role of tumour cell-autonomous signalling after radiotherapy. It describes how radiotherapy, through its immunomodulating effects, might be combined with immune checkpoint inhibitors and other immunotherapies and how DNA damage response inhibitors in combination with radiotherapy may be used to further augment this approach.
Radiotherapy, immunity, and immune checkpoint inhibitors
Radiotherapy exerts immunostimulatory and immunosuppressive effects, both locally, within the irradiated tumour microenvironment, and systemically, outside the radiation field. Inspired by preclinical data that showed synergy between radiotherapy and immune checkpoint inhibitors, multiple clinical trials were initiated with the hypothesis that combined treatment with radiotherapy and immune checkpoint inhibitors could stimulate a robust systemic immune response and improve clinical outcomes. However, despite early optimism, radioimmunotherapy trials in the curative and metastatic settings have met with little success. In this Review, we summarise the immunostimulatory effects of radiotherapy that provided the theoretical basis for trials of combination radiotherapy and immune checkpoint inhibitors. We also discuss findings from clinical trials incorporating radiotherapy and immune checkpoint inhibitors and examine the success of these trials in the context of the immunosuppressive effects of radiotherapy. We conclude by highlighting targets for relieving radiotherapy-induced immunosuppression with the goal of enhancing the combined effects of radiotherapy and immune checkpoint inhibitors.
Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment
In recent decades, there has been substantial growth in our understanding of the immune system and its role in tumor growth and overall survival. A central finding has been the cross-talk between tumor cells and the surrounding environment or stroma. This tumor stroma, comprised of various cells, and extracellular matrix (ECM), has been shown to aid in suppressing host immune responses against tumor cells. Through immunosuppressive cytokine secretion, metabolic alterations, and other mechanisms, the tumor stroma provides a complex network of safeguards for tumor proliferation. With recent advances in more effective, localized treatment, radiation therapy (XRT) has allowed for strategies that can effectively alter and ablate tumor stromal tissue. This includes promoting immunogenic cell death through tumor antigen release to increasing immune cell trafficking, XRT has a unique advantage against the tumoral immune evasion mechanisms that are orchestrated by stromal cells. Current studies are underway to elucidate pathways within the tumor stroma as potential targets for immunotherapy and chemoradiation. This review summarizes the effects of tumor stroma in tumor immune evasion, explains how XRT may help overcome these effects, with potential combinatorial approaches for future treatment modalities.
Radiotherapy and immunotherapy: a beneficial liaison?
Key Points Radiotherapy not only exerts direct cytotoxic effects on tumour cells, but also re-programmes the tumour microenvironment to exert a potent antitumour immune response Tumour-cell proliferation and cell death due to T-cell cytotoxic killing coexist in irradiated tumours, resulting in stable disease that might provide a window of opportunity for immune-modulation Radiotherapy enhances antitumour immunity, but also induces immunosuppressive responses The combination of immunotherapy and radiotherapy presents a multimodal treatment approach that involves stimulating and suppressing various pathways The interaction between radiotherapy and the host immune system has uncovered new mechanisms that can be exploited to improve the efficacy of radiotherapy. In this article, the authors highlight data providing new explanations for the success or failure of radiotherapy, and postulate, using radiation-induced tumour equilibrium (RITE) as an example, how the combination of immune-modulation and radiation could tip the balance of the host immune response to promote cure. Investigations into the interaction between radiotherapy and the host immune system have uncovered new mechanisms that can potentially be exploited to improve the efficacy of radiotherapy. Radiation promotes the release of danger signals and chemokines that recruit inflammatory cells into the tumour microenvironment, including antigen-presenting cells that activate cytotoxic T-cell function. By contrast, radiation can attract immunosuppressive cells into the tumour microenvironment. In rare circumstances, the antitumour effect of radiotherapy has been observed outside of the radiation field, known as the abscopal effect. This phenomenon is proposed to have an immune origin and indicates that local radiotherapy elicits systemic effects. Herein, we highlight data that provide new mechanistic explanations for the success or failure of radiotherapy, and postulate how the combination of immune-modulation and radiation could tip the balance of the host immune response to promote cure. We use the concept of radiation- induced tumour equilibrium (RITE) as a starting point to discuss the mechanistic influence of immune-checkpoint therapies on radiotherapy efficacy.
Type I IFN protects cancer cells from CD8+ T cell–mediated cytotoxicity after radiation
Treatment of tumors with ionizing radiation stimulates an antitumor immune response partly dependent on induction of IFNs. These IFNs directly enhance dendritic cell and CD8+ T cell activity. Here we show that resistance to an effective antitumor immune response is also a result of IFN signaling in a different cellular compartment of the tumor, the cancer cells themselves. We abolished type I IFN signaling in cancer cells by genetic elimination of its receptor, IFNAR1. Pronounced immune responses were provoked after ionizing radiation of tumors from 4 mouse cancer cell lines with Ifnar1 knockout. This enhanced response depended on CD8+ T cells and was mediated by enhanced susceptibility to T cell-mediated killing. Induction of Serpinb9 proved to be the mechanism underlying control of susceptibility to T cell killing after radiation. Ifnar1-deficient tumors had an augmented response to anti-PD-L1 immunotherapy with or without radiation. We conclude that type I IFN can protect cancer cells from T cell-mediated cytotoxicity through regulation of Serpinb9. This result helps explain why radiation of tumors can stimulate antitumor immunity yet also result in resistance. It further suggests potential targets for intervention to improve therapy and to predict responses.
Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics
Smart drug delivery systems (SDDSs) for cancer treatment are of considerable interest in the field of theranostics. However, developing SDDSs with early diagnostic capability, enhanced drug delivery and efficient biodegradability still remains a scientific challenge. Herein, we report near-infrared light and tumor microenvironment (TME), dual responsive as well as size-switchable nanocapsules. These nanocapsules are made of a PLGA-polymer matrix coated with Fe/FeO core-shell nanocrystals and co-loaded with chemotherapy drug and photothermal agent. Smartly engineered nanocapsules can not only shrink and decompose into small-sized nanodrugs upon drug release but also can regulate the TME to overproduce reactive oxygen species for enhanced synergistic therapy in tumors. In vivo experiments demonstrate that these nanocapsules can target to tumor sites through fluorescence/magnetic resonance imaging and offer remarkable therapeutic results. Our synthetic strategy provides a platform for next generation smart nanocapsules with enhanced permeability and retention effect, multimodal anticancer theranostics, and biodegradability. Nanoparticles that can change shape have attracted attention for improved circulation and tumor penetration. Here, the authors report on a size changeable nanoparticle that responds to near-infrared light and can be used for photothermal therapy, photodynamic therapy, and drug delivery applications.
Radiation dose and fraction in immunotherapy: one-size regimen does not fit all settings, so how does one choose?
Recent evidence indicates that ionizing radiation can enhance immune responses to tumors. Advances in radiation delivery techniques allow hypofractionated delivery of conformal radiotherapy. Hypofractionation or other modifications of standard fractionation may improve radiation’s ability to promote immune responses to tumors. Other novel delivery options may also affect immune responses, including T-cell activation and tumor-antigen presentation changes. However, there is limited understanding of the immunological impact of hypofractionated and unique multifractionated radiotherapy regimens, as these observations are relatively recent. Hence, these differences in radiotherapy fractionation result in distinct immune-modulatory effects. Radiation oncologists and immunologists convened a virtual consensus discussion to identify current deficiencies, challenges, pitfalls and critical gaps when combining radiotherapy with immunotherapy and making recommendations to the field and advise National Cancer Institute on new directions and initiatives that will help further development of these two fields.This commentary aims to raise the awareness of this complexity so that the need to study radiation dose, fractionation, type and volume is understood and valued by the immuno-oncology research community. Divergence of approaches and findings between preclinical studies and clinical trials highlights the need for evaluating the design of future clinical studies with particular emphasis on radiation dose and fractionation, immune biomarkers and selecting appropriate end points for combination radiation/immune modulator trials, recognizing that direct effect on the tumor and potential abscopal effect may well be different. Similarly, preclinical studies should be designed as much as possible to model the intended clinical setting. This article describes a conceptual framework for testing different radiation therapy regimens as separate models of how radiation itself functions as an immunomodulatory ‘drug’ to provide alternatives to the widely adopted ‘one-size-fits-all’ strategy of frequently used 8 Gy×3 regimens immunomodulation.
Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC), one of the most fatal malignancies in the world, is usually diagnosed in advanced stages due to late symptom manifestation with very limited therapeutic options, which leads to ineffective intervention and dismal prognosis. For a decade, tyrosine kinase inhibitors (TKIs) have offered an overall survival (OS) benefit when used in a first-line (sorafenib and lenvatinib) and second-line setting (regorafenib and cabozantinib) in advanced HCC, while long-term response remains unsatisfactory due to the onset of primary or acquired resistance. Recently, immunotherapy has emerged as a promising therapy in the treatment of several solid tumors, such as melanoma and non-small cell lung cancer. Moreover, as the occurrence of HCC is associated with immune tolerance and immunosurveillance escape, there is a potent rationale for employing immunotherapy in HCC. However, immunotherapy monotherapy, mainly including immune checkpoint inhibitors (ICIs) that target checkpoints programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and the cytotoxic T lymphocyte antigen-4 (CTLA-4), has a relatively low response rate. Thus, the multi-ICIs or the combination of immunotherapy with other therapies, like antiangiogenic drugs and locoregional therapies, has become a novel strategy to treat HCC. Combining different ICIs may have a synergistical effect attributed to the complementary effects of the two immune checkpoint pathways (CTLA-4 and PD-1/PD-L1 pathways). The incorporation of antiangiogenic drugs in ICIs can enhance antitumor immune responses via synergistically regulating the vasculature and the immune microenvironment of tumor. In addition, locoregional treatments can improve antitumor immunity by releasing the neoplasm antigens from killed tumor cells; in turn, this antitumor immune response can be intensified by immunotherapy. Therefore, the combination of locoregional treatments and immunotherapy may achieve greater efficacy through further synergistic effects for advanced HCC. This review aims to summarize the currently reported results and ongoing trials of the ICIs-based combination therapies for HCC to explore the rational combination strategies and further improve the survival of patients with HCC.